
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Send comments about this document to: jes-comments@sun.com

Java Embedded Server™

Developer Guide

Version 2.0

Preliminary Early Chapters

Updates Available at
http://www.sun.com/software/embedderserver

August 2000, Revision 01

Please
Recycle

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:
Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Solaris, Java, and Java Embedded Server are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à
Netscape Communicator™: Copyright 1995 Netscape Communications Corporation. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Solaris, Java, et Java Embedded Server sont des marques de fabrique ou des
marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont
utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres
pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Contents iii

Contents

1. JES Administration 5

The Framework Cache 7

Managing the Bundle Life Cycle 7

Setting and Getting System Properties 12

Using the JES Managment Panel 13

Shortcuts to Starting Up 15

2. Using the HTTP Service 19

Overview of the JES HTTP Service 20

Registering Servlets and Resources 21

What Registering Servlets Does 22

What Registering Resources Does 22

Handling Service Dependencies 23

The httpRegister Method 24

How To Write a Servlet 30

Using Basic Authentication 33

Using the HttpAdmin Service 41

Contents iv

3. Using the Log Service 49

Overview of the JES Log Service 50

4. Device Discovery and Access 65

Overview 65

How Device Discovery and Access Works 65

A. JES 2.0 System Properties 69

5

CHAPTER 1

JES Administration

This chapter describes how to use the framework console and the JES Management
Panel to
■ manage the bundle life cycle in the Java Embedded Server framework
■ obtain information about installed bundles
■ get and set system properties and OSGI environment variables

▼ Launching the Framework
1. Set the JES_JAVA_HOME environment variable to the pathname of the Java

installation you wish to use.

On Solaris, setenv JES_JAVA_HOME path_to_java_install_dir. For example,

On Windows NT, set JES_JAVA_HOME=path_to_java_install_dir. For example,

If you are using the Java 2 platform, we recommend version 1.2.2-006 or greater.

2. Use the runjes command to start the framework.

% setenv JES_JAVA_HOME /usr/bin/jdk1.2.2-006

% set JES_JAVA_HOME=c:\pjava302

% cd jes_install_dir
% bin/runjes

6 JES 2.0 Developer Guide • 8/25/2000

The JES welcome and framework prompt appear.

Syntax for runjes and runjes.bat
runjes[.bat] [-cacheDir pathname] [-dryrun] [-j jvm_option]...[commands]

Java Embedded Server 2.0
Copyright 1998, 1999 and 2000 Sun Microsystems, Inc. All rights
reserved.
Use is subject to license terms.
Type ’h[elp]’ for a list of commands.
>

TABLE 1-1 Options to the runjes Command

Option Description

-cacheDir pathname The pathname of the directory JES should use for its cache. The
default is /home/ user_name/jescache on Solaris and Linux and
%HOME%\jescache on Windows NT. The value of variable
HOME must not contain any quotes. The value of pathname is
assigned to the property com.sun.jes.framework.cache.dir .

-dryrun Show what would be done without actually doing it. You may
want to use the -dryrun option to examine what the runjes
utility does when it is called.

-j jvm_option Pass the jvm_option to the Java interpreter. By default, the
following three system properties are defined.
com.sun.jes.framework.bundles.baseurl is set to
file: install_dir/bundles , where install_dir is the path to the JES
installation directory. This allows you to use short names (instead
of fully specifying the pathname) when referring to system
bundles, for example, install log servlet http .
com.sun.jes.impl.keystore.store is set to
file: install_dir/lib/tlscerts and
com.sun.jes.impl.keystore.access is set to password where
install_dir is the path to the JES installation directory and password
is the the encoded password needed to access the keystore. The
keystore is an example keystore that is used in the SSL examples.
You can override these properties to point to your own
information.

commands This can be the pathname or URL of a file from which to read JES
commands, or a list of JES commands. If a command contains a
blank, it must be quoted when used on the runjes command line.
For example, runjes "install log" . If no commands are
specified, then commands are read from stdin.

Chapter 1 JES Administration 7

The Framework Cache
The framework maintains a cache in a directory on the local file system. This
directory stores the actual bundle files that have been installed as well as the status
of each bundle. When the framework instance is stopped, this cache directory is not
removed. You can then start the framework again, and it restores itself with all
bundles in the same state as they were just prior to shutdown, using the information
in this cache directory.

The runjes command launches a framework instance as a new process. You should
include the cacheDir option to explicitly specify which instance (that is, which
cache) should be started. In this example, the framework that is dormant in
~/myCacheDir is launched.

If there is no cache directory and you do not specify one, runjes creates one named
path_to_home/jescache where path_to_home is the value of the Java system property
user.home . You can change the default cache directory location by setting the
com.sun.jes.framework.cache.dir system property.

You may find it useful to remove a cache directory, especially when developing
bundles. You can remove the framework cache just as you would any directory in
your file system.

Managing the Bundle Life Cycle
Once you have the framework running, you can begin using it to install, start,
update, stop, and uninstall bundles, managing the bundle life cycle.

Bundle States

During its life cycle, a bundle may be in one of the following states.

% runjes -cacheDir ~/myCacheDir

TABLE 1-2 Bundle States

State Description

INSTALLED The bundle has been successfully installed.

RESOLVED All Java classes and native code that this bundle requires have been
made available.

STARTING The bundle is being started

8 JES 2.0 Developer Guide • 8/25/2000

Framework Commands

You can use the following framework commands

■ on the runjes command line (see “Shortcuts to Starting Up” on page 15)

■ in a file

■ at the framework prompt.

STOPPING The bundles is being stopped

ACTIVE The bundle has successfully started and is running.

UNINSTALLED The bundle has been uninstalled.

TABLE 1-3 Framework Commands

Command Name Description

b[undles] List all installed bundles and their status.

e[xportedpackages] List exported packages and the bundles that export and
import them respectively.

g[et] property_name Get the value of the specified property.

h[elp] [command] List all commands and their options.

i[nstall]
bundle_url [, ...]

Install the specified bundles.

m[anifest]
bundle_url | bundle_id

Display values of bundle manifest headers.

r[un] filename | url Execute commands read from the specified filename or
URL.

se[t]
property_name=property_value

Set the value for the specified property.

ser[rvices] [filter] List all registered services whose properties match the
given filter or all services if no filter is specified. The filter
is the string representation of an LDAP search filter as
defined in RFC 1960: A String Representation of LDAP
Search Filters.

sh[utdown] Shutdown the framework and exit.

sta[rt]
bundle_url| bundle_id [, ...]

Install and start the specified bundles.

TABLE 1-2 Bundle States

State Description

Chapter 1 JES Administration 9

▼ Installing and Starting the Core Service Bundles

1. From the framework prompt, install the log, servlet, and http service bundles.

Since by default, runjes sets the system property
com.sun.jes.framework.bundles.baseurl to file: install_dir/bundles ,
where install_dir is the path to the JES installation directory, you can use short names
(instead of fully specifying the pathname) when referring to system bundles. You
can also leave off the .jar suffix, if you prefer.

2. Get the IDs for the bundles you installed.

Note that the state of the bundles is INSTALLED.

sto[p]
bundle_url| bundle_id [, ...]

Stop the specified bundles.

tty Read commands from stdin. Use tty when you are
starting the framework and you want to continue to
work interactively.

un[install] bundle_url |
bundle_id [, ...]

Uninstall the specified bundles.

up[date] bundle_url |
bundle_id [bundle_update_url]
[, ...]

Update the specified bundle.
bundle_url takes precedence over the bundle’s
Bundle-UpdateLocation manifest header. The variables
bundle_url and bundle_update_url must specify the full
URL of a bundle or a path relative to that specified by the
system property
com.sun.jes.framework.bundles.baseurl .

> install log.jar, servlet.jar, http.jar

> bundles
ID STATE LOCATION
-- --------- -------------------------
1 INSTALLED file:/home/mcm/jes2.0/bundles/log.jar
2 INSTALLED file:/home/mcm/jes2.0/bundles/servlet.jar
3 INSTALLED file:/home/mcm/jes2.0/bundles/http.jar

TABLE 1-3 Framework Commands

Command Name Description

10 JES 2.0 Developer Guide • 8/25/2000

3. View the manifest for the HTTP bundle (optional).

Notice that the HTTP bundle imports the javax.servlet and
javax.servlet.http packages. Though the HTTP bundle depends on the servlet
bundle, you do not have to install or start the servlet bundle before the HTTP
bundle. You can start bundles in groups (as demonstrated in the next step) and the
framework will resolve dependencies automatically.

4. Start the service bundles.

Notice that the state of the bundles is now ACTIVE.

> manifest 3
Bundle-Vendor: Sun Microsystems, Inc.
Bundle-Version: 0.1
Bundle-Activator: com.sun.jes.impl.http.HttpActivator
Bundle-DocURL: http://java.sun.com/products/embeddedserver
Created-By: 1.2.2 (Sun Microsystems Inc.)
Bundle-Name: http
Manifest-Version: 1.0
Bundle-ContactAddress: jes-comments@sun.com
Export-Package:org.osgi.service.http;specification-version=1.0,
org.osgi.service.log; specification-version=1.0,
com.sun.jes.service.http, com.sun.jes.service.ssl
Export-Service: org.osgi.service.http.HttpService
Bundle-Description: The HTTP Service
Import-Package: javax.servlet; specification-version=2.1.1,
javax.servlet.http; specification-version=2.1.1

> start 1,2,3
> bundles
ID STATE LOCATION
-- --------- -------------------------
1 ACTIVE file:/home/mcm/jes2.0/bundles/log.jar
2 ACTIVE file:/home/mcm/jes2.0/bundles/servlet.jar
3 ACTIVE file:/home/mcm/jes2.0/bundles/http.jar

Chapter 1 JES Administration 11

Examining Package Dependencies

● To obtain a list of package dependencies, use the exportedpackages command.

Getting a List of Services

● To obtain a list of all registered services, use the services command.

> exportedpackages
Package: javax.servlet.http (2.1.1)
 Exported by: 2 (file:/home/mcm/jes2.0/bundles/servlet.jar)
 Imported by: 3 (file:/home/mcm/jes2.0/bundles/http.jar)
Package: com.sun.jes.service.http (0.0.0)
 Exported by: 3 (file:/home/mcm/jes2.0/bundles/http.jar)
Package: org.osgi.service.log (1.0.0)
 Exported by: 1 (file:/home/mcm/jes2.0/bundles/log.jar)
 Imported by: 3 (file:/home/mcm/jes2.0/bundles/http.jar)
Package: com.sun.jes.service.ssl (0.0.0)
 Exported by: 3 (file:/home/mcm/jes2.0/bundles/http.jar)
Package: javax.servlet.jsp (2.1.1)
 Exported by: 2 (file:/home/mcm/jes2.0/bundles/servlet.jar)
Package: javax.servlet (2.1.1)
 Exported by: 2 (file:/home/mcm/jes2.0/bundles/servlet.jar)
 Imported by: 3 (file:/home/mcm/jes2.0/bundles/http.jar)
Package: org.osgi.service.http (1.0.0)
 Exported by: 3 (file:/home/mcm/jes2.0/bundles/http.jar)

> services
[com.sun.jes.service.http.auth.users.UserPasswordService]
 description=User and Password Management Service
[com.sun.jes.service.http.auth.basic.BasicSchemeHandler]
 description=The OSGI HTTP Basic Authentication Service
[org.osgi.service.http.HttpService]
 description=The OSGI HTTP Service
[com.sun.jes.service.http.HttpAdmin]
[org.osgi.service.log.LogService]
 description=The standard OSGi Log service
[org.osgi.service.log.LogReaderService]
 description=The standard OSGi LogReader service

12 JES 2.0 Developer Guide • 8/25/2000

● To obtain a list of services that match specific properties, use the services
command with the filter option. The example returns the services that do not have
the string “OSGI” in their descriptions.

Updating a Bundle

The update command replaces an existing bundle with a new one. The command
requires the URL or ID of the bundle to update. You can also specify a URL for the
bundle you want to use for the update. If you do not specify a URL, the framework
uses the URL specified in the Bundle-UpdateLocation manifest header. If no
Bundle-UpdateLocation is specified, the framework uses the location of the original
bundle.

Stopping Bundles

The stop command stops a running bundle. The command requires the URL or ID
of the bundle to stop. When you stop a bundle, the framework unregisters the
bundle’s services, releases any services used by the bundle, and sets the bundle’s
state to RESOLVED.

Uninstalling Bundles

The uninstall command stops a bundle (if it is running), releases any persistent
resources the bundle was holding, and sets the bundle’s status to UNINSTALLED.
Exported packages remain, however, until the framework is shutdown.

Setting and Getting System Properties
You can use the get and set commands to view and modify system properties on
the framework command line. Most system properties changes take effect
immediately, but com.sun.jes.framework.cachedir does not take effect until
the framework is restarted. For a complete list of JES system properties and how to
use them, see Appendix A.

> services (!(description=*OSGI*))
[com.sun.jes.service.http.auth.users.UserPasswordService]
 description=User and Password Management Service
[com.sun.jes.service.http.HttpAdmin]

Chapter 1 JES Administration 13

You can also use the get command to view the following OSGi framework
environment properties.

Using the JES Managment Panel
The JES Management Panel (JESMP) provides a graphical interface to a framework
instance. Once you have a framework and core services running (see “Launching the
Framework” on page 5 and “Installing and Starting the Core Service Bundles” on
page 9), you can install and start the bundles required for the JESMP.

TABLE 1-4 OSGi Framework Environment Properties

Property Description

org.osgi.framework.version The version of the framework

org.osgi.framework.vendor The vendor of this framework
implementation.

org.osgi.framework.language The language being used. See ISO 639 for
possible values.

org.osgi.framework.os.name The name of the operating system of the
hosting computer.

org.osgi.framework.os.version The version number of the operating
system of the hosting computer.

org.osgi.framework.processor The name of the processor of the hosting
computer.

14 JES 2.0 Developer Guide • 8/25/2000

▼ Launching the JESMP

1. Install and start the JESMP bundle and the bundles it depends upon.

Notice that you do not have to type the .jar extension and that the start
command was used to both install and start the bundles.

2. Open the JES Management Panel in your browser.

Open the JES Management Panel in your browser.

In the address window of your browser, type http:// host: port/admin , where host
is the host name specified in the com.sun.jes.service.http.hostname
property (the default is the host where JES is running, or any host if that host is
multi-homed), and port is the port number specified in the
com.sun.jes.service.http.port property (default is 8080). For example, if
neither property has been set, the JESMP can be accessed at this URL:
http:// localhost:8080/admin .

You are prompted for a user name and password. By default, they are both admin .

Managing and Monitoring the Bundle Life Cycle

You can install, start, update, stop, and uninstall bundles, view the list of services a
bundle has registered or is using, view package import and export information, read
the JES log, and manage user accounts from the JESMP.

Bundles

The left pane of the Bundles tab lists all installed bundles. Click on a bundle name to
view information about its state (INSTALLED, ACTIVE, RESOLVED), location,
dependencies, and manifest headers and to perform operations such as starting,
stopping, and updating the bundle.

> start httpauth, tcatjspcruntime, httpusers, jesmp
> bundles
ID STATE LOCATION
-- --------- -------------------------
1 ACTIVE file:/home/mcm/jes2.0/bundles/log.jar
2 ACTIVE file:/home/mcm/jes2.0/bundles/servlet.jar
3 ACTIVE file:/home/mcm/jes2.0/bundles/http.jar
4 ACTIVE file:/home/mcm/jes2.0/bundles/httpauth.jar
5 ACTIVE file:/home/mcm/jes2.0/bundles/tcatjspcruntime.jar
6 ACTIVE file:/home/mcm/jes2.0/bundles/httpusers.jar
7 ACTIVE file:/home/mcm/jes2.0/bundles/jesmp.jar

Chapter 1 JES Administration 15

You can also download and install a new bundle by typing the URL of the bundle in
the first text box after the bundle list, then clicking Install.

You can browse to and install a bundle in a local file system by clicking the Browse
button next to the second text box after the bundle list, then clicking Install.

Services

The left pane of the Services tab lists all registered services. Click on a service name
to view information about its source bundle, client bundles, registration properties,
and configuration properties. You can modify the configuration properties of a
service as well. For example, you can change the logSize and
severityThreshold properties for the LogService .

Packages

The left pane of the Packages tab lists all the packages currently in use. Click on a
package name to view information about its exporter and importers.

View Log

The View Log tab lists the log messages as specified by the log system properties. To
modify the number and type of messages that appear in the log, change the
configuration properties listed for the LogService on the Services tab.

User Management

You can add and remove users from the User Management tab.

Shortcuts to Starting Up
Along with these utilities there are three scripts in the jes_install_dir/bin directory,
starthttp , startjesmp , and startall , that automatically install and start the
bundles required for the HTTP service, the JES Management Panel, or all JES
services, respectively.

Using runjes and the start* Scripts

You can use either of the three start scripts, starthttp , startjesmp , and
startall , with the runjes utility or with the framework run command.

16 JES 2.0 Developer Guide • 8/25/2000

Launching the Framework and Starting the HTTP Service

1. Launch an interactive framework session with runjes .

2. Install and start the bundles required for the HTTP service.

% cd install_dir
% bin/runjes tty
Java Embedded Server 2.0

Copyright 1998, 1999 and 2000 Sun Microsystems, Inc. All rights
reserved.
Use is subject to license terms.

Type ’h[elp]’ for a list of commands.

>

> run install_dir/bin/starthttp
> bundles
ID STATE LOCATION
-- ------ ----------------------------
1 ACTIVE file:/home/mcm/jes2.0/bundles/servlet.jar
2 ACTIVE file:/home/mcm/jes2.0/bundles/http.jar

Chapter 1 JES Administration 17

Launching the Framework and Starting the JES Management Panel

1. Launch a noninteractive framework session and install and start the bundles
required for the JESMP.

2. Open the JES Management Panel in your browser.

In the address window of your browser, type http:// host: port/admin , where host
is the host name specified in the com.sun.jes.service.http.hostname
property (the default is the host where JES is running, or any host if that host is
multi-homed), and port is the port number specified in the
com.sun.jes.service.http.port property (default is 8080). For example, if
neither property has been set, the JESMP can be accessed at this URL:
http:// localhost:8080/admin .

You are prompted for a user name and password. By default, they are both admin .

% cd install_dir
% bin/runjes bin/startjesmp
% com.sun.jes.impl.http.ResourceServlet: init
com.sun.jes.impl.http.auth.users.UserAdminServlet: init
com.sun.jes.impl.http.auth.users.AddUserServlet: init
com.sun.jes.impl.http.auth.users.RemoveUserServlet: init
com.sun.jes.impl.http.auth.users.ErrorServlet: init
com.sun.jes.impl.http.auth.users.ChangePasswordServlet: init
com.sun.jes.impl.http.ResourceServlet: init
com.sun.jes.impl.jesmp.ui.MainPanel: init
com.sun.jes.impl.jesmp.ui.LRPanes: init
com.sun.jes.impl.jesmp.ui.BundleList: init
com.sun.jes.impl.jesmp.ui.BundleDetail: init
com.sun.jes.impl.jesmp.ui.ServiceList: init
com.sun.jes.impl.jesmp.ui.ServiceDetail: init
com.sun.jes.impl.jesmp.ui.PackageList: init
com.sun.jes.impl.jesmp.ui.PackageDetail: init
com.sun.jes.impl.jesmp.ui.LogDetail: init
com.sun.jes.impl.jesmp.ui.TabBar: init

18 JES 2.0 Developer Guide • 8/25/2000

19

CHAPTER 2

Using the HTTP Service

20 JES 2.0 Developer Guide • 8/25/2000

Overview of the JES HTTP Service
The Java Embedded ServerTM framework includes a core HTTP service that allows
you to write services that serve resources to the Internet. For example, you might be
building a video camera service that would allow your customers to view certain
locations in their home from a website.

The main job of the core HTTP service is to serve servlets and resources to the
Internet. Servlets are JavaTM classes based on the Java Servlet API, while resources
can be HTML files, JSP files, or classes from bundles. The HTTP service maps
resources to an URL namespace. A namespace is the part of the Internet’s domain
name system that the server controls, for example, all of the URL names that begin
with http://myserver.com. This means that when a client requests an URL that falls
within the server’s namespace, the server delivers the corresponding resource using
HTTP. The HTTP service can use either HTTP 1.1 or HTTP 1.0.

The HTTP service contains a Web server with listeners and handlers. Each listener
corresponds to a port number for a Web server (for example, myserver.com:8080) and
listens for HTTP requests. Handlers respond to the requests. The structure is that the
HTTP server has a number of listeners and each listener has a number of handlers.

FIGURE 2-1 Conceptual Structure of the HTTP Server

HTTP Server

Listener Listener

Handler Handler

server:port server:port

Chapter 2 Using the HTTP Service 21

The handlers are dynamically assigned to the listeners and the number of handlers
varies according to the load the HTTP server is experiencing. You can configure the
minimum and maximum number of handlers by setting system properties, as
described in Appendix A.

To use the JES HTTP service, you need to write at least two components:

1. A client service that calls the HTTP service’s API (contained in the com.sun.jes.

service.http.HttpService interface, which extends org.osgi.service.http.HttpService).

2. An HTTP client, the object that actually requests a resource from the HTTP
service, which is usually a Java servlet. You can write the Java servlet directly or
generate it from a JSP file using the JES 2.0 JSP runtime tool (about which you can
find more information in README-tcatjsp.txt in the JES 2.0 build).

In other words, you often need to write both a service and a servlet, or write a
service and use the JSP runtime tool to create a servlet. In either case, you’ll need
access to the Java Servlet 2.1 API, available on the Internet at http://java.sun.com/products/

servlet/2.1. In addition, the JES HTTP service supports both HTTP 1.0 and HTTP 1.1.

Registering Servlets and Resources
Because the JES HTTP service allows you to register Java servlets, it is aware of the
servlet request-response model. Essentially, a servlet is an HTTP response to an
HTTP request.

MIME stands for MultiPart Internet Mail Extensions and is the standard describing
the different types of messages that can be sent across the Internet. This means that
the HTTP service sends the servlet an request with a MIME body type, and the
servlet sends back a response with a MIME body type. (For more information on
MIME, you can look up the HTTP Request for Comments documents (RFCs) 1521
and 1522 on the Internet.)

But the servlet model is essentially that simple: the server sends a request, and the
servlet sends back a response. A servlet that works with the core HTTP service uses
HTTP as its protocol. This means that it typically extends HttpServlet (from the javax.

servlet.http package) and uses an HttpServletRequest object as its request and an
HttpServletResponse object as its response.

22 JES 2.0 Developer Guide • 8/25/2000

The JES HTTP service requires that you register both servlets and resources (which
are the HTML files, JSP files, images, or Java classes that the servlet might use to
deliver content to the client). Both servlets and resources must be registered with an
HttpContext object, which maps a resource name to an URL. This means that when
you submit an URL to the HTTP service, it locates the corresponding resource and
responds.

What Registering Servlets Does
Servlets written according to the Java Servlet API allow your service to deliver
dynamic content to the World Wide Web. Specifically, servlets do this by sending out.

println statements that contain valid HTML or that call resources to the client Web
browser. (You can also write JSP files to deliver dynamic content, rather than writing
servlets directly. If you’re interested, you should investigate the JES JSP runtime
compiler with the Tomcat Web server; see the README-tcatjsp.txt file for more
information.) Resources include images, HTML files, or any other type of object the
servlet needs to deliver the content.

To make servlets available to the JES HTTP service, your bundle must register them.
In general, your bundle registers a servlet when the HTTP service is registered,
listening for an event to detect this. The JES HTTP service in turn uses a context
object (created with HttpContext) to get information about the servlet, particularly the
servlet’s URL. The HTTP service then starts the servlet by calling its service

method, causing the servlet to respond to the HTTP request. Registering a servlet
gives the servlet access to part of the server’s URI namespace, so that you can access
the servlet on the server.

You can define an implementation of HttpContext yourself, or you can pass a null value
instead of an HttpContext object, causing the JES HTTP service to use a default value
for the context object. In either case, the context object defines such things as the
MIME type the servlet uses for its response to the client, the URL at which the
servlet is registered, and whether the HTTP service should service the request.

What Registering Resources Does
Your servlet typically uses resources such as images of HTML files. Registering
resources makes them visible in the server’s URI namespace, so that a bundle has
access to them by a certain URL. Resources can be packaged into a bundle’s JAR file,
available on a filesystem before the bundle is installed, or created by the bundle.

Chapter 2 Using the HTTP Service 23

Registering resources in an HTTP client service is similar to registering servlets,
except that resources are typically registered as bundles. When you register a
resource, you still create an HttpContext object (created from org.osgi.service.http.

HttpContext or a class that implements it) to give the JES HTTP service information
about the resource. You then use the registerResources method from HttpService to map
a resource name to an alias name, so that the resource can be retrieved by its alias.

Because the resource is within a bundle, it gets a special bundle URL that looks like
bundle:// id/ path, for example, bundle:// 1224/ images/ foo.gif. The id is the unique bundle
ID assigned when the bundle is registered and available with the getBundleId method.
The path is the path to the resource within the bundle or on the filesystem.

Handling Service Dependencies
When you register resources and servlets, you should do so in response to events.
Events mark a change in a service’s lifecycle. For example, an event fires when a
service is registered or unregistered. Your service depends on the JES HTTP service,
so you should register servlets and resources when the HTTP service is registered
and unregister them when the HTTP service is unregistered.

The HTTP service may already be registered when you start your bundle activator
class, or it may become registered while your bundle activator is running. Your
bundle activator needs to handle both situations. Specifically, you need to register
both within the start method, after checking that the HTTP service is already
running, and also within the serviceChanged method in response to a REGISTERED

event.

You then unregister your servlets and resources in response to an UNREGISTERING

event (CODE EXAMPLE 2-1 makes this more clear). When you register and unregister
in response to events, the JES framework uses symbol resolution to resolve service
dependencies.

The servlet and resource registrations last as long as the JES HTTP service is
registered with the framework. You should always unregister servlets explicitly with
the unregister method, which calls the servlet’s destroy method and stops the servlet. If
you don’t use unregister, the servlet’s alias would be unregistered, but the servlet itself
and any threads accessing it still exist.

24 JES 2.0 Developer Guide • 8/25/2000

Because other services may in turn depend on your service, never call the
BundleActivator.stop method in your bundle activator class. As CODE EXAMPLE 2-1

shows, you should declare it but not implement it. You should only use
BundleActivator.stop in the context of Bundle.stop, so that your bundle is stopped
correctly.

The httpRegister Method
The main work of CODE EXAMPLE 2-1 is done by the httpRegister method, which is
defined within the TestBundle class. httpRegister does the work of registering the
resources and servlets when a REGISTERED event occurs.

The first thing that httpRegister does is create an HttpContext object. You must always
create an HttpContext object, as the JES HTTP service uses the HttpContext object to get
information about the servlet’s registration. To create an HttpContext object, you must
implement its methods, handleSecurity, getMimeType, and getResource, either in the
BundleActivator class or in another class.

The implementation of these methods in CODE EXAMPLE 2-1 is very simple. The
handleSecurity method returns true so that the JES HTTP service will service the
request; the getMimeType method returns null to allow the JES HTTP service to
determine the MIME type the servlet returns; and the getResource method returns an
URL. For a more complete implementation of these methods, especially handleSecurity,
see “Using Basic Authentication” later in this chapter.

The httpRegister method then registers resources and servlets using the registerResources

and registerServlet methods. These methods map a resource to an URL. For example,
the method call

hs.registerServlet("/block", block, null, null);

Chapter 2 Using the HTTP Service 25

registers the servlet object named block to the alias /block, so that is available from
the URL http://yourServer:yourPortNumber/block. The complete rules of alias mapping
that you use in the registerServlet and registerResources methods are summarized in
TABLE 2-1.

TABLE 2-1 Specifying Aliases in JES 2.0

Alias Definition

Default host name Defined in com.sun.jes.service.http.hostname.
Otherwise, accepts connections from any host. A
JES extension.

Default port number Defined in com.sun.jes.service.http.port.
Otherwise, the default port number is 8080 for
http and 443 for https. On UNIX systems, you
need root privilege to bind to a port number
below 1024. A JES extension.

/a Specifies the alias /a after the default host name
and port number.

/a/b Specifies the alias /a/b after the default host name
and port number.

http://host:port/alias Specifies a host name, port number, and servlet
alias. A JES extension.

http://host/alias Uses the default port number from com.sun.jes.
service.http.port. Otherwise, uses 8080 as the
default port number for http and 443 as the
default port number for https. A JES extension.

http://*:port/alias Registers the servlet, using any local host, the
specified port number, and the specified alias. A
JES extension.

26 JES 2.0 Developer Guide • 8/25/2000

▼ To Register Servlets and Resources

1. Write a bundle activator class that implements BundleActivator and ServiceListener.

2. Implement the BundleActivator.start method.

3. Within the start method, register a service listener for the JES HTTP service, get
a reference to the service, get the service itself, and register your servlets and
resources, if the HTTP service has been started before the bundle activator
class.

4. Implement the serviceChanged method, listening for REGISTERED events and
registering servlets and resources if the HTTP service is registered after the
bundle activator class is started.

5. Also in serviceChanged, listen for an UNREGISTERING event and unregister your
resources if the JES HTTP service is unregistered.

6. Declare the BundleActivator.stop method, but do not call it within your bundle
activator class. You should only call this method within Bundle.stop.

▼ Classes and Methods

TABLE 2-2 Classes and Methods for Registering Servlets and Resources

Class, Interface, or Package Methods

org.osgi.framework.BundleActivator start, stop

org.osgi.service.http.HttpContext getMimeType, getResource, handleSecurity

org.osgi.service.http.HttpService registerServlet, registerResources, unregister

org.osgi.framework.BundleContext getServiceReference, getService,
addServiceListener

org.osgi.framework.ServiceListener serviceChanged

org.osgi.framework.ServiceEvent getType

java.net.URL openConnection

java.net.URLConnection getInputStream

Chapter 2 Using the HTTP Service 27

CODE EXAMPLE 2-1 TestBundle.java (OSGi-compliant)

package test;

import java.net.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import org.osgi.framework.*;
import org.osgi.service.http.*;

Implement
BundleActivator
and
ServiceListener

public class TestBundle implements BundleActivator, ServiceListener {

 private HttpService service;
 private ServiceReference ref;
 private BundleContext bc ;
 private byte[] buffer = new byte[2048];
 private ByteArrayOutputStream baos = new ByteArrayOutputStream(2048);

Get the bundle
context from the
framework

Add a service
listener for the
HTTP service

public void start(BundleContext bc) throws BundleException {

this.bc = bc;

try {
bc.addServiceListener(this, "(objectClass=org.osgi.service.http.HttpService)");

} catch (InvalidSyntaxException e) {
throw new BundleException("Could not register HttpService " + "event listener", e);

}

Get a reference to
the HTTP service
and the service
itself

Register here if the
HTTP service is
already registered

Call httpRegister(),
defined below

ref = bc.getServiceReference("org.osgi.service.http.HttpService");
if (ref != null) {

service = (HttpService)bc.getService(ref);

httpRegister();
}

}

Leave the stop
method empty

public void stop(BundleContext bc) throws BundleException { }

28 JES 2.0 Developer Guide • 8/25/2000

Always make these
lines synchronized

Check to see if an
HTTP service is
already registered

If so, get the
original HTTP
service registered

Then, register
servlets and
resources

public void serviceChanged(ServiceEvent event) {

synchronized (this) {
int etype = event.getType();
if (etype == ServiceEvent.REGISTERED) {

if (service == null) {
ref = bc.getServiceReference("org.osgi.service.http.HttpService");

if (ref != null) {
service = (HttpService)bc.getService(ref);

httpRegister();
}

}

When a service is
unregistered, get
its service
reference

If it’s the same as
the one originally
registered,
unregister servlets
and resources

} else if (etype == ServiceEvent.UNREGISTERING) {
ServiceReference sr = event.getServiceReference();

if (sr.equals(ref)) {
service.unregister("/alias");

bc.ungetService(ref);
service = null;

}
}

}
}

Define
httpRegister

Implement the 3
methods required
by HttpContext

private void httpRegister() {

HttpContext hc = new HttpContext () {
public boolean handleSecurity(HttpServletRequest req, HttpServletResponse res) {

return true;
}

public String getMimeType(String name) {
return null;

}

Chapter 2 Using the HTTP Service 29

public URL getResource(String path) {
URL u = getClass().getResource(path);
System.out.println("url = " + u);
return u;

}
};

Register resources
and create an URL

try {
service.registerResources("/alias", "/resources", hc);

URL url = new URL("http://laguna:8080/alias/foo.txt");

System.out.println("Opening URL connection ...");
URLConnection uc = url.openConnection();

InputStream is = uc.getInputStream();
System.out.println(new String(getBytes(is)));
is.close();

} catch (Exception e) {
e.printStackTrace();

}
}

private byte[] getBytes(InputStream is) throws IOException {
int n;
baos.reset();
while ((n = is.read(buffer, 0, buffer.length)) != -1) {

baos.write(buffer, 0, n);
}
return baos.toByteArray();

}
}

30 JES 2.0 Developer Guide • 8/25/2000

How To Write a Servlet
The Java Servlet API consists of two packages, javax.servlet and javax.servlet.http. The
two most important parts of the Java Servlet API (in the context of the JES HTTP
service) are the javax.servlet.Servlet interface and the javax.servlet.http.HttpServlet class. A
servlet that you use with the JES HTTP service should always extend HttpServlet,
which implements Servlet through its superclass, GenericServlet.

The Servlet interface declares the three most common servlet methods—init, service,
and destroy. (Remember that the registerServlet method calls service and the unregister

method calls destroy.) When you extend HttpServlet to write a servlet that receives
requests and returns responses by way of HTTP, you should always override at least
one of its doXXX methods.

HttpServlet has a default implementation of service that dispatches requests to doGet,
doPost, doPut, and other methods, according to the HTTP command that the servlet
has received. An HTTP command is exchanged between the client and the server at
the beginning of the request. An HTTP GET command would look something like
this:

GET /index.html HTTP/1.1

Because many requests are GET requests, a servlet you write for the JES HTTP
service will typically extend HttpServlet, implement a doGet method, and return HTML
to the client Web browser by a number of out.println statements.

CODE EXAMPLE 2-2, which shows the beginning of SnoopServlet.java, is a simple
example of how to write an HttpServlet.

First, notice that SnoopServlet extends HttpServlet. This is standard practice for servlets
that return HTML to a Web browser by HTTP. SnoopServlet also happens to
implement org.osgi.service.http.HttpContext, because it defines methods that the JES
HTTP service can call to get information about a servlet’s registration.

After defining a default user name and password (admin for each) and a constructor,
SnoopServlet starts with a doGet method. doGet is passed two objects: HttpServletRequest,
which contains the information the user sent as a request, and HttpServletResponse,
which allows the servlet to make a response.

Chapter 2 Using the HTTP Service 31

CODE EXAMPLE 2-2 The Beginning of SnoopServlet.java (JES-compliant)

package snoopbasic;

import java.io.*;
import java.util.*;
import java.net.*;
import javax.servlet.*;
import javax.servlet.http.*;

import org.osgi.framework.*;
import org.osgi.service.http.*;

import com.sun.jes.service.http.auth.basic.*;

These lines are
specific to the
JES and OSGI
APIs

public class SnoopServlet extends HttpServlet implements HttpContext {

 private final String USER = "admin";
 private final String PASS = "admin";

 SnoopActivator bc;

 public SnoopServlet (SnoopActivator bundleContext) {
bc = bundleContext;

 }

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

PrintWriterout;

res.setContentType("text/html");
out = res.getWriter ();

out.println("<html>");
out.println("<head><title>Snoop Servlet</title></head>");
out.println("<body>");

out.println("<h1>Request information:</h1>");
out.println("
");
out.println("
");

.

.

.

32 JES 2.0 Developer Guide • 8/25/2000

The doGet method does four things. First, it creates a PrintWriter object that will
become the output stream for data sent back to the client. Next, it sets the response
type to text/html, indicating that the servlet produces standard HTML as its output.
Third, doGet uses the getWriter method of the HttpServletResponse object to send a
response of type java.io.PrintWriter (remember that the response is encoded with MIME
type text/html) back to the client.

Because the response object is created when the user’s request is made, it points
correctly to the client that made the request. Once all that is done, doGet uses out.

println statements to send HTML tags that the client Web browser can interpret and
display as a Web page. This pattern is typical of doGet methods.

To summarize, a servlet you write for the JES HTTP service usually does the
following:

■ Extends javax.servlet.http.HttpServlet

■ Implements doGet or another doXXX method that receives requests from the
servlet’s default service method

■ Sets the response type, usually to text/html

■ Creates a PrintWriter object and sets it to the return value of the getWriter method to
send the response

■ Uses out.println statements to send HTML to the client

These points are all basic to HTTP servlets. In addition, SnoopServlet takes steps that
are specific to the JES and OSGI APIs and that are explained in more detail in “Using
Basic Authentication.”

You may also want to check these excellent references for more information about
writing Java servlets:

■ Java Servlet Programming, Jason Hunter with William Crawford, O’Reilly &
Associates, 1998

■ Java Enterprise in a Nutshell: A Desktop Quick Reference, Servlets chapter, David
Flanagan et al, O’Reilly & Associates, 1999

■ Java Servlet Specification, Version 2.1, Sun Microsystems, November 1998,
available at http://java.sun.com/products/servlet

Note that JES 2.0 supports the Java Servlet API 2.1 and does not include the concept
of sandboxed servlets that have security restrictions on which files they can access.

Chapter 2 Using the HTTP Service 33

Using Basic Authentication
HTTP 1.1 provides built-in support for basic authentication. Basic authentication, as
describedin RFC 2617, is very simple and does not provide the highest level of
security. However, all browsers support it, so it is used here as an example of how to
implement the HttpContext.handleSecurity method.

Basic authentication is based on a challenge/response, username/password model.
When you register servlets or resources, you can provide a special implementation
of handleSecurity. When a client makes a request for some URL at which you have
registered a servlet or resource, the server checks if the request has proper
authentication information in its request headers. If not, the server provides a
challenge to the client.

The challenge causes the Web browser to display a dialog box in which the user
enters a name and password that are sent back to the server. If a user with the given
name and password has been configured on the server, the HTTP service honors the
request. With Java Embedded Server, basic authentication uses both the JES
HttpService and the BasicSchemeHandler service.

Basic authentication has some inherent weaknesses. For instance, the user name and
password are transmitted directly over the Internet in clear text. Anyone monitoring
the network stream would have direct access to them. Basic authentication is simply
used here as an example of how to implement handleSecurity.

The examples that follow show a servlet, SnoopServlet.java, that implements HttpContext

and its three methods—getMimeType, getResource, and handleSecurity—and a bundle
activator class, SnoopActivator.java, that uses an instance of SnoopServlet as its context
object.

34 JES 2.0 Developer Guide • 8/25/2000

▼ To Use Basic Authentication

1. Write a servlet that extends HttpServlet and implements HttpContext.

2. Specify a user name and password in the servlet.

3. Write a doGet method that checks the request headers for authorization
information.

4. Write simple implementations of HttpContext.getResource and HttpContext.
getMimeType.

5. Write an implementation of handleSecurity that uses a challenge/response model
to request a user name and password.

6. Write a bundle activator class that implements BundleActivator and ServiceListener.

7. Get references to both the HttpService and BasicSchemeHandler service.

8. Use the references to obtain both the services.

9. Write a serviceChanged method that listens for events and calls a register method
to register the servlet.

10. Write a register method that actually does the work of registering the servlet.

11. Declare a stop method, but leave its implementation empty.

▼ Classes and Methods

Class, Interface, or Package Methods

javax.servlet.http.HttpServlet service, doGet

org.osgi.service.http.HttpContext getMimeType, getResource, handleSecurity

org.osgi.framework.BundleActivator start, stop

org.osgi.framework.ServiceListener serviceChanged

org.osgi.framework.ServiceEvent getServiceReference, getType

org.osgi.framework.BundleContext addServiceListener

org.osgi.service.http.HttpService registerServlet, registerResources, unregister

com.sun.jes.service.http.auth.basic.
BasicSchemeHandler

getResponse, sendChallenge

com.sun.jes.service.http.auth.basic.
BasicSchemeHandler.Response

getName, getPassword

Chapter 2 Using the HTTP Service 35

CODE EXAMPLE 2-3 SnoopActivator.java (JES-compliant)

Import the http
and http.auth.
basic packages

package snoopbasic;

import java.util.*;
import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;
import org.osgi.framework.*;

import org.osgi.service.http.*;
import com.sun.jes.service.http.auth.basic.*;

Implement
BundleActivator
and
ServiceListener

Define the alias
the servlet will
use

public class SnoopActivator implements BundleActivator, ServiceListener {

 SnoopServlet snoop = null;
 HttpService http;
 BasicSchemeHandler basic;
 ServiceReference httpref;
 ServiceReference httpauthref;

 final String SERVLET_ALIAS = "/snoopbasic";
 BundleContext bundleContext;

Implement a
start method

Get a reference
to the HTTP
service

public void start(BundleContext bc) throws BundleException {

bundleContext = bc;
snoop = new SnoopServlet(this);

httpref = bc.getServiceReference("org.osgi.service.http.HttpService");

if (httpref != null) {
http = (HttpService) bc.getService(httpref);
httpRegister();

}

Get a reference to the
Basic Scheme
Handler service

httpauthref =
bc.getServiceReference("com.sun.jes.service.http.auth.basic.BasicSchemeHandler");

if (httpauthref != null) {
basic = (BasicSchemeHandler) bc.getService(httpauthref);

}

36 JES 2.0 Developer Guide • 8/25/2000

Add service
listeners for both
services

try {
bc.addServiceListener(this, "(objectClass=org.osgi.service.http.HttpService)");
bc.addServiceListener(this,

"(objectClass=com.sun.jes.service.http.auth.basic.BasicSchemeHandler)");
}

catch(InvalidSyntaxException ise) {
ise.printStackTrace();

}
 }

Unregister
servlets when
the HTTP
service is
unregistered

public synchronized void serviceChanged(ServiceEvent event) {

if (event.getType() == ServiceEvent.UNREGISTERING) {
if (event.getServiceReference().equals(httpref)) {

httpUnregister();
httpref = null;
http = null;

}
else if (event.getServiceReference().equals(httpauthref)) {

httpauthref = null;
basic = null;

}
}

Register
servlets when
the HTTP
service is
registered

else if (event.getType() == ServiceEvent.REGISTERED) {

httpref = bundleContext.getServiceReference("org.osgi.service.http.HttpService");
if (httpref != null && http == null) {

http = (HttpService) bundleContext.getService(httpref);
httpRegister();

}
 }

Get the Basic
Scheme
Handler service

httpauthref = bundleContext.getServiceReference(
"com.sun.jes.service.http.auth.basic.BasicSchemeHandler");

if (httpauthref != null && basic == null) {
basic = (BasicSchemeHandler) bundleContext.getService(httpauthref);

}
}

Define the
registration
method

Register the
servlet using the
servlet as the
context object

private void httpRegister() {

try {
http.registerServlet(SERVLET_ALIAS, snoop, null, snoop);

}

Chapter 2 Using the HTTP Service 37

catch(ServletException se) {
se.printStackTrace();

}
catch(NamespaceException nse) {

nse.printStackTrace();
}

}

Define the
unregister
method

void httpUnregister() {
try {

http.unregister(SERVLET_ALIAS);
}
catch(IllegalArgumentException iae) { }
}

BasicSchemeHandler getBasicSchemeHandlerRef() {
return basic;

}

Leave the
implementation
of stop blank

public void stop(BundleContext bc) throws BundleException { }
}

38 JES 2.0 Developer Guide • 8/25/2000

CODE EXAMPLE 2-4 SnoopServlet.java

Implement the
servlet
packages

Implement the
http and http.
auth.basic
packages

package snoopbasic;

import java.io.*;
import java.util.*;
import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;

import org.osgi.framework.*;
import org.osgi.service.http.*;
import com.sun.jes.service.http.auth.basic.*;

Extend
HttpServlet and
implement
HttpContext

Define a user
name and
password

public class SnoopServlet extends HttpServlet implements HttpContext {

private final String USER = "admin";
private final String PASS = "admin";

SnoopActivator bc;

public SnoopServlet(SnoopActivator bundleContext) {
bc = bundleContext;

}

Implement a
doGet method

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

PrintWriterout;

res.setContentType("text/html");
out = res.getWriter ();

out.println("<html>");
out.println("<head><title>Snoop Servlet</title></head>");
out.println("<body>");

out.println("<h1>Request information:</h1>");
out.println("
");
out.println("
");

Chapter 2 Using the HTTP Service 39

Get info from the
request headers
sent by the
client

print(out, "Request method", req.getMethod());
print(out, "Request URI", req.getRequestURI());
print(out, "Request protocol", req.getProtocol());
print(out, "Servlet path", req.getServletPath());
print(out, "Path info", req.getPathInfo());

print(out, "Path translated", req.getPathTranslated());
print(out, "Query string", req.getQueryString());
print(out, "Content length", req.getContentLength());
print(out, "Content type", req.getContentType());
print(out, "Server name", req.getServerName());

print(out, "Server port", req.getServerPort());
print(out, "Remote user", req.getRemoteUser());
print(out, "Remote address", req.getRemoteAddr());
print(out, "Remote host", req.getRemoteHost());
print(out, "Authorization scheme", req.getAuthType());

out.println("
");
out.println("
");
out.println("</body></html>");

out.flush();
 }

Print the user’s
name

private void print (PrintWriter out, String name, String value) {
out.print(" " + name + ": ");
out.println(value == null ? "<none>" : value);
out.println("
");

}

private void print (PrintWriter out, String name, int value) {
out.print(" " + name + ": ");
if (value == -1) {

out.println("<none>");
} else {

out.println(value);
}

}

Implement the
three methods
required by
HttpContext

public URL getResource(String str) {
return null;

}

 public String getMimeType(String str) {
return null;

}

40 JES 2.0 Developer Guide • 8/25/2000

Implement
handleSecurity

handleSecurity
is called for each
request to the
servlet

public boolean handleSecurity(HttpServletRequest req, HttpServletResponse res) {

BasicSchemeHandler basic = bc.getBasicSchemeHandlerRef();
BasicSchemeHandler.Response response = basic.getResponse(req);

Display a dialog
box for the user
to log in

Return false to
display the user
name and dialog
box

if (response == null) {
try {

basic.sendChallenge(res, "dummy");
}
catch(IOException ioe) {

ioe.printStackTrace();
}
return false;

}

Get the user
name and
password

If the user name
and password
don’t pass the
check, display
the dialog box

String user = response.getName();
String password = response.getPassword();

if (! check(user, password)) {
try {

basic.sendChallenge(res, "dummy");
}
catch(IOException ioe) {

ioe.printStackTrace();
}
return false;

}

return true;
 }

Define the
check method

boolean check(String user, String pass) {
if (USER.equals(user) && PASS.equals(pass)) {

return true;
}
return false;

 }

}

Chapter 2 Using the HTTP Service 41

Using the HttpAdmin Service
Once you register your servlets and resources, you can get information about them
by using the HttpAdmin service. HttpAdmin works with HttpService. The two services are
always registered together, so HttpAdmin is always registered when HttpService is.

HttpAdmin exposes two methods—getResourceRegistrations and getServletRegistrations, each
of which return an array of HttpRegistration objects. An HttpRegistration object has five
basic parts: the alias name, a bundle object, an HttpContext object, a resource name or
servlet object, and an URL. You extract these parts with the methods the
HttpRegistration interface contains:

public java.lang.String getAlias ()
public javax.servlet.Servlet getServlet ()
public java.lang.String getResourceName ()
public java.net.URL getURL (java.lang.String defaultHost) throws java.net.MalformedURLException
public HttpContext getHttpContext ()
public Bundle getBundle ()

CODE EXAMPLE 2-5 shows how to use an HttpRegistration object. The example is the Java
servlet that displays the Home Portal that is shipped with the Java Embedded
Server. This example happens to be a servlet, but you can use the HttpRegistration

object outside of a servlet as well. The servlet also implements basic authentication,
which you learned about in the previous section.

Remember that you must have the HttpService and HttpAdmin services running in order
to run this example. In this release, the two services always start together.

42 JES 2.0 Developer Guide • 8/25/2000

▼ To Use the HttpRegistration Object in a Servlet

1. Write a class that extends HttpServlet and implements HttpContext.

2. Get references to the BasicSchemeHandler and UserPasswordService services, then get
the services themselves.

3. Write a doGet method to return data to the client. Be sure to set the content type
and get a PrintWriter object.

4. Get a reference to the HttpAdmin service, then get the service itself.

5. Get the array of servlet registrations.

6. Move through the array, taking action on each servlet. Remember that you can
use any of the methods in HttpRegistration.

7. Write a doPost method, if your servlet is likely to receive POST requests.

8. Implement HttpContext and its getResource, getMimeType, and handleSecurity
methods. If you like, you can use basic authentication, as described in the
previous section.

▼ Classes and Methods

TABLE 2-3 Classes and Methods for Using an HttpRegistration Object

Class, Interface, or Package Methods

javax.servlet.http.HttpServlet doGet, doPost

org.osgi.service.httpHttpContext getResource, getMimeType, handleSecurity

org.osgi.framework.BundleContext getService, getServiceReference

com.sun.jes.service.http.HttpAdmin getResourceRegistrations,
getServletRegistrations

com.sun.jes.service.http.HttpRegistration getAlias, getBundle, getHttpContext,
getResourceName, getServlet, getURL

javax.servlet.ServletResponse setContentType, getWriter

javax.servlet.ServletConfig getInitParameter

javax.servlet.Servlet getServletConfig

Chapter 2 Using the HTTP Service 43

CODE EXAMPLE 2-5 HomePortalServlet.java (JES-compliant)

Import both
HttpRegistration
and HttpAdmin

Import both the
authorization
packages

package com.sun.jes.impl.homeportal;

import org.osgi.framework.*;
import org.osgi.service.http.*;

import com.sun.jes.service.http.HttpRegistration;
import com.sun.jes.service.http.HttpAdmin;

import com.sun.jes.service.http.auth.basic.*;
import com.sun.jes.service.http.auth.users.*;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.net.URL;

Get the localized
strings for
displaying in
different locales

public class HomePortalServlet extends HttpServlet implements HttpContext {

private static final LocalizedStrings ls = (LocalizedStrings)
java.util.ResourceBundle.getBundle("com.sun.jes.impl.homeportal.LocalizedStrings");

private HttpServletRequest myRequest;
private HttpServletResponse myResponse;
private PrintWriter out;
private BundleContext bc;

When passed
references, get the
basic and user
password
authentication
services

private BasicSchemeHandler basic;

UserPasswordService ups;
private boolean isAdmin = false;

public HomePortalServlet (BundleContext bc, ServiceReference anHTTPBasicReference,
ServiceReference anHTTPUsersReference) {

super();
this.bc = bc;

basic = (BasicSchemeHandler) bc.getService(anHTTPBasicReference);
ups = (UserPasswordService) bc.getService(anHTTPUsersReference);

}

44 JES 2.0 Developer Guide • 8/25/2000

Implement a doGet
method

These four
methods are all
defined later

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

this.myRequest = request;
this.myResponse = response;
this.myResponse.setContentType("text/html");
this.out = new java.io.PrintWriter(response.getWriter());

htmlBegin();
this.displayServices();
displayChangePassword();
htmlEnd();

}

Start the HTML
output

void htmlBegin() {

this.out.println("<HTML><HEAD><TITLE>");
this.out.println(ls.welcomeHomePortal());
this.out.println("</TITLE></HEAD>");
this.out.println("<BODY BACKGROUND='/images/homeportal/backrnd_tile.gif'>");
this.out.println("
");

}

Get HttpAdmin
before you can get
an
HttpRegistration
object

private void displayServices() {

try {
HttpAdmin httpService = (HttpAdmin)this.bc.getService(

bc.getServiceReference("com.sun.jes.service.http.HttpAdmin"));

HttpRegistration[] regs = httpService.getServletRegistrations();

Move through the
servlets in the
array

Check for init
parameters that
make the servlet a
home portal

for (int i=0; i<regs.length; i++) {

Servlet servlet = regs[i].getServlet();

ServletConfig servletConfig = servlet.getServletConfig();

String presentationStr = servletConfig.getInitParameter(
 "com.sun.jes.service.homeportal.displayName");

String presentationImageAlias = servletConfig.getInitParameter(
 "com.sun.jes.service.homeportal.displayImageURL");

If the servlet has a
display name, get
its URL

if (presentationStr != null) {
URL aServletURL = regs[i].getURL("*");

Chapter 2 Using the HTTP Service 45

If the servlet has
an image, display it

Use a null target to
ensure the same
browser

if (presentationImageAlias != null) { // present the icon too
this.out.println("");

}

this.printLink(aServletURL.getFile(), presentationStr,null);
this.out.print("

");

}

If the servlet has
an image, but no
text ...

Display the image
linked to the
servlet’s URL

else if (presentationImageAlias != null) {

URL aServletURL = regs[i].getURL("*");
this.out.println("<a href='");
this.out.println(aServletURL.getFile());
this.out.print("'>");
this.out.println("");
this.out.print("");

}
}

Check if the user is
an administrator

Then, display a link
to the JES
Management
Panel

printLink is defined
below

if(isAdmin == true) {

this.out.print("

");
this.out.print("<img src='/images/homeportal/sel.gif' WIDTH='20' HEIGHT='22'

ALIGN='BOTTOM' BORDER='0'>");
this.printLink("/admin", " JES Management Panel", null);
this.out.print("

");

}

} catch (Exception e) {
e.printStackTrace();

}

 }

Display the
Change Password
Web page

void displayChangePassword() {

this.out.print("

");
this.out.print("<img src='/images/homeportal/sel.gif' WIDTH='20' HEIGHT='22'

ALIGN='BOTTOM' BORDER='0'>");
this.printLink("/chgp", " Change Password", null);
this.out.print("

");

}

46 JES 2.0 Developer Guide • 8/25/2000

Complete the
HTML output

void htmlEnd() {
this.out.println("</BODY></HTML>");
this.out.close();

}

Implement a
doPost method to
handle POST
requests

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws IOException, ServletException {

this.doGet (req, res);
}

Define printLink
here

protected void printLink(String location, String label, String target) {
this.out.print("<A HREF='");
this.out.print(location);

if (target != null) {
this.out.print("' TARGET='"+target);

}

this.out.print("'>");
this.out.print("");
this.out.print(label);
this.out.print("");
this.out.print("");

}

Implement the 3
HttpContext
methods

public URL getResource(String str) {
return null;

 }

 public String getMimeType(String str) {
return null;

 }

Implement basic
authentication

public boolean handleSecurity(HttpServletRequest req, HttpServletResponse res) {

BasicSchemeHandler.Response response = basic.getResponse(req);
if (response != null) {

Get the user name
and password from
the request
headers

String user = response.getName();
String password = response.getPassword();

Chapter 2 Using the HTTP Service 47

check is defined
below

if (check(user, password)) {
if (ups.isAdmin(user))

isAdmin = true;
return true;

}
}

Returning false
causes the
browser to display
the login dialog box

try {
basic.sendChallenge(res, "homeportal");

}
catch(IOException ioe) {

ioe.printStackTrace();
}

return false;
 }

check is defined
here

boolean check(String user, String pass) {

boolean result = false;

try {
result = ups.checkPassword(user, pass);

}
catch(IllegalArgumentException iae) {

iae.printStackTrace();
 result = false;

}

return result;
 }
}

48 JES 2.0 Developer Guide • 8/25/2000

49

CHAPTER 3

Using the Log Service

50 JES 2.0 Developer Guide • 8/25/2000

Overview of the JES Log Service
When you start the JES log service, it runs along with the JES framework, in the
background, waiting for event messages. The log service runs when you start the JES
framework and then enter a command like this one:

> start log , servlet, http, tcatjspcruntime, httpauth, httpusers, jesmp

An event message can come from any type of event, including a BundleEvent,
FrameworkEvent, or ServiceEvent, or from any bundle. The log resides in memory as long
as the JES framework is running and can hold up to 1,000,000 entries. However, the
log is not stored persistently and is destroyed when the framework is shut down.

Most of the log service API is contained in the package org.osgi.service.log, which has
four interfaces—LogEntry, LogListener, LogReaderService, and LogService.

You can think of the interfaces in the log service API this way:

■ LogEntry creates an entry to add to the log.

■ LogService puts the entry into the log.

■ LogListener creates a listener so that a bundle is notified when an entry is added to
the log.

■ LogReaderService adds and removes listeners and reads messages stored in the log.

Chapter 3 Using the Log Service 51

If you were to draw the log service, it might look something like FIGURE 3-1.

FIGURE 3-1 The Interfaces in the Log Service API

The JES framework also has a configurable interface with features that add to the
OSGi specification; that is discussed later, in “Discovering the Configurable
Interface.”

Adding Entries to the Log

Each log entry is a a message that describes an event. A message always includes a
log level and a String, and can also include a Throwable exception, a ServiceReference

object, or both. You log messages using one of these forms of the log method:

LogService

public void log (int level, String message)
public void log (int level, String message, Throwable exception)
public void log (ServiceReference sr, int level, String message)
public void log (ServiceReference sr, int level, String message, Throwable exception)

Bundle
LogListener

Log

LogService

LogReaderService

contains entries of
type LogEntry

listens for entries

writes events to the log

reads events from the log
adds and removes listeners and

52 JES 2.0 Developer Guide • 8/25/2000

Each entry contains a log level. The log levels are also in LogService and range from 1
to 4, with these descriptions:

In this list, the highest (or most severe) log level is 1 (LOG_ERROR), and the lowest (or
least severe) is 4 (LOG_DEBUG).

When you add a Throwable exception to a log entry, it’s usually to an entry of type 1,
LOG_ERROR. When you give an entry a ServiceReference object, the entry allows other
bundles to discover information about the bundle that logged the message.

In addition to the log level, log string, Throwable exception, and ServiceReference object
that you add, the log service also timestamps log entries. If all of this is sounding
like a very long String for one entry, you’re right. A log entry, which is a single String

object, can contain multiple lines.

▼ To Log Entries

1. Get the bundle context from the framework.

2. Get a reference to the log service, then the service itself.

3. Use the log method to put messages into the log.

CODE EXAMPLE 3-1 demonstrates how to add messages to the log.

Log Level Description Meaning

1 LOG_ERROR An error message indicating that the bundle or
service may not be functional. Highest level.

2 LOG_WARNING A warning message indicating that the bundle or
service is still functioning but may experience
problems in the future as a result of the warning
condition.

3 LOG_INFO An informational message added as a result of some
change in the bundle or service that does not indicate
a problem.

4 LOG_DEBUG A debugging message that is used to describe a
problem and may be meaningless to anyone but the
developer. Lowest level.

Chapter 3 Using the Log Service 53

CODE EXAMPLE 3-1 Logging Messages (LogExample.java)

Import the
LogService
interface

package logexample;

import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;
import org.osgi.service.log.LogService;

Get the bundle
context from the
framework

Use the bundle
context to create
the log service
reference

log is defined in
getServices,
below

Check for a null in
case getServices
is called
repeatedly

public class LogExample {

LogExample(BundleContext bc) {
try {

getServices(bc);

if (log == null) {
System.err.println("Unable to get the Log service reference!");
return;

}

Generate some
fake log messages

log.log(LogService.LOG_ERROR, "Log error");
log.log(LogService.LOG_WARNING, "Log warning");
log.log(LogService.LOG_INFO, "Log info");
log.log(LogService.LOG_DEBUG, "Log msg");

Set log to null to
avoid memory
leaks

log = null;

} catch (Exception e) {
System.err.println(e.getMessage());

}

}

getServices is
defined here

public final static String LOG_CLASS = "org.osgi.service.log.LogService";

54 JES 2.0 Developer Guide • 8/25/2000

Getting Information from a Log Entry

Because each entry in the log is a LogEntry object, you can use the LogEntry methods to
get information from the entry. You can extract the log level, log string, Throwable

exception, ServiceReference object, or timestamp that are part of the entry. You can also
retrieve the bundle that logged the message. The timestamp is returned in the
number of milliseconds since January 1, 1970, 00:00:00 GMT.

The methods you use to retrieve information from a LogEntry object are these:

LogEntry

public Bundle getBundle ()
public ServiceReference getServiceReference ()
public int getLevel ()
public String getMessage ()
public Throwable getException ()
public long getTime ()

But you may also want to read the entries that were already added to the log before
you created the listener. To do this, you enumerate through the entries and read
them.

A reference to the
log service object

private LogService log = null;

Synchronized to
prevent the log
service from being
uninstalled while
this bundle is
trying to get it

synchronized void getServices(BundleContext bc) {
ServiceReference sr = null;

Get the service
reference and the
log service

if (log == null) {
if ((sr = bc.getServiceReference(LOG_CLASS)) != null) {

log = (LogService) bc.getService(sr);
}

}
}

}

Chapter 3 Using the Log Service 55

▼ To Enumerate and Read the Entries in the Log

1. Get references to the log and log reader services.

2. Get the services themselves.

3. Use the getLog method from the log reader service to get the entries in the log as
an enumeration.

4. Move through each entry in the enumeration.

5. Use the methods from LogEntry to read the entries.

CODE EXAMPLE 3-2 shows you how to enumerate through the log.

56 JES 2.0 Developer Guide • 8/25/2000

CODE EXAMPLE 3-2 Enumerating Through the Log (LogEnumeration.java)

Import the log
classes

package logenumeration;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;

import org.osgi.service.log.LogEntry;
import org.osgi.service.log.LogService;
import org.osgi.service.log.LogReaderService;

import java.util.Date;
import java.util.Enumeration;

Get references to
the LogService
and
LogReaderService

Display a message
if a service is null

public class LogEnumeration {

private static final String API_PREFIX = "API Test ";

LogEnumeration(BundleContext bc) {
try {

getServices(bc);

if (log == null) {
System.err.println("Unable to get Log service reference!");

return;
}

if (logreader == null) {
System.err.println("Unable to get LogReader service reference!");
return;

}

Log entries with
just a level and a
message

// API test #1

System.out.println("public void log(int level, String msg)");

log.log(LogService.LOG_ERROR, API_PREFIX + "1: Log error");
log.log(LogService.LOG_WARNING, API_PREFIX + "1: Log warning");
log.log(LogService.LOG_INFO, API_PREFIX + "1: Log info");
log.log(LogService.LOG_DEBUG, API_PREFIX + "1: Log debug");

Chapter 3 Using the Log Service 57

Log entries with a
level, message,
and Throwable
exception

// API test #2

 System.out.println("public void log(int level, String msg, Throwable e)");

 log.log(LogService.LOG_ERROR, API_PREFIX + "2: Log error",
new IllegalArgumentException("error"));

log.log(LogService.LOG_WARNING, API_PREFIX + "2: Log warning",
new IllegalArgumentException("warning"));

log.log(LogService.LOG_INFO, API_PREFIX + "2: Log info",
new IllegalArgumentException("info"));

log.log(LogService.LOG_DEBUG, API_PREFIX + "2: Log debug",
new IllegalArgumentException("debug"));

Log entries with a
level, message,
and service
reference object

// API test #3

System.out.println("public void log(ServiceReference sr, int level, String msg)");

log.log(sr, LogService.LOG_ERROR, API_PREFIX + "3: Log error");
log.log(sr, LogService.LOG_WARNING, API_PREFIX + "3: Log warning");
log.log(sr, LogService.LOG_INFO, API_PREFIX + "3: Log info");
log.log(sr, LogService.LOG_DEBUG, API_PREFIX + "3: Log debug");

Log entries with a
level, message,
service reference
object, and
Throwable
exception

// API test #4

System.out.println("public void log(ServiceReference sr, int level, String msg,
Throwable e)");

log.log(sr, LogService.LOG_ERROR, API_PREFIX + "4: Log error",
new IllegalArgumentException("error"));

log.log(sr, LogService.LOG_WARNING, API_PREFIX + "4: Log warning",
new IllegalArgumentException("warning"));

log.log(sr, LogService.LOG_INFO, API_PREFIX + "4: Log info",
new IllegalArgumentException("info"));

log.log(sr, LogService.LOG_DEBUG, API_PREFIX + "4: Log debug",
new IllegalArgumentException("debug"));

Enumerate
through the log and
show each entry’s
contents

System.out.println();

 for(Enumeration e = logreader.getLog(); e.hasMoreElements();) {
 showEntry ((LogEntry) e.nextElement());
 }

 } catch (Exception e) {
 System.err.println(e.getMessage());
 }

 }

58 JES 2.0 Developer Guide • 8/25/2000

Reference to the
LogService object

Reference to the
LogReaderService
object

private final static String LOG_CLASS = "org.osgi.service.log.LogService";
private final static String LOG_READER_CLASS = "org.osgi.service.log.LogReaderService";

private LogService log = null;
private LogReaderService logreader = null;

ServiceReference sr = null;

synchronized void getServices(BundleContext bc) {
if (log == null) {

if ((sr = bc.getServiceReference(LOG_CLASS)) != null) {
log = (LogService) bc.getService(sr);

}

if ((sr = bc.getServiceReference(LOG_READER_CLASS)) != null) {
logreader = (LogReaderService) bc.getService(sr);

}
}

}

Show the contents
of a log entry

Returns true if
there’s an error in
the entry

private boolean showEntry(LogEntry entry) {

Bundle b = entry.getBundle();
int level = (int) entry.getLevel();
long time = entry.getTime();
String message = entry.getMessage();
ServiceReference sr = entry.getServiceReference();
Throwable e = entry.getException();

Show only those
entries that were
logged by this
bundle

if (message.startsWith(API_PREFIX) == true) {

Show the severity
level information

System.out.print(" Level " + level + ": ");
switch (level) {

case LogService.LOG_ERROR:
System.out.print("ERROR ");
break;

Chapter 3 Using the Log Service 59

case LogService.LOG_WARNING:
System.out.print("WARNING");
break;

case LogService.LOG_INFO:
System.out.print("INFO ");
break;

case LogService.LOG_DEBUG:
System.out.print("DEBUG ");
break;

default:
System.out.print(" ??? ");
return true;

}

Show the time that
the message was
logged

System.out.println(" at " + new Date(time).toString());

Show the message
that was logged

System.out.println(" Message: " + message);

Show the service
reference
information and
any exception
messages

System.out.print("Service, Exception: " + sr);
if (e == null) {

System.out.println(", None.");
} else {

System.out.println(", '" + e.getMessage() + "'");
}

System.out.println();

} // if

return false;
 }

}

60 JES 2.0 Developer Guide • 8/25/2000

Creating a Listener

To create a listener for your bundle, you implement both the LogListener and
LogReaderService interfaces. LogListener creates the listener that allows your bundle to
“hear” entries logged by the JES framework or by other bundles as soon as they
have been logged. LogReaderService allows you to add a listener, remove it, or read the
entries already in the log in the form of an Enumeration.

LogListener and LogReaderService include these methods:

LogListener

public void logged (LogEntry entry)

LogReaderService

public void addLogListener (LogListener listener)
public void removeLogListener (LogListener listener)
public Enumeration getLog ()

▼ To Create a Listener

1. Write a class that implements LogListener.

2. Use the bundle context to create a reference to the log and log reader services.

3. Use the references to get the services themselves.

4. Add the log listener to the bundle.

5. Make the bundle sleep briefly so that framework events can be heard first.

6. Log the messages.

7. Remove the log listener at the end of the class, so that it is removed when the
bundle shuts down.

CODE EXAMPLE 3-3 shows you how to create a log listener.

Chapter 3 Using the Log Service 61

CODE EXAMPLE 3-3 Creating a Log Listener (LogListening.java)

Import the log
service classes

package loglistening;

import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;

import org.osgi.service.log.LogEntry;
import org.osgi.service.log.LogListener;
import org.osgi.service.log.LogService;
import org.osgi.service.log.LogReaderService;

Implement
LogListener

Use the bundle
context to create
the log service
reference

public class LogListening implements LogListener {

LogListening(BundleContext bc) {
try {

getServices(bc);

if (log == null) {
System.err.println("Unable to get Log service reference!");
return;

}
if (logreader == null) {

System.err.println("Unable to get LogReader service reference!");
return;

}

Set up a listener

Make the bundle
sleep briefly so
framework events
can be heard first

Create some
messages to be
logged

logreader.addLogListener(this);

Thread.sleep(10);

System.out.println("Using: public void log(int level, String msg)");
log.log(LogService.LOG_ERROR, "Sample LOG_ERROR");
log.log(LogService.LOG_WARNING, "Sample LOG_WARNING");
log.log(LogService.LOG_INFO, "Sample LOG_INFO");
log.log(LogService.LOG_DEBUG, "Sample LOG_DEBUG");

Remove the
listener so we can’t
detect messages
any more

Messages that
follow should not
be logged

logreader.removeLogListener(this);

log.log(LogService.LOG_ERROR, "ERROR: You shouldn’t see this");

62 JES 2.0 Developer Guide • 8/25/2000

Remove the log
listener when the
bundle shuts down

 if (log == null) {
 if ((sr = bc.getServiceReference(LOG_CLASS)) != null) {
 log = (LogService) bc.getService(sr);
 }
 if ((sr = bc.getServiceReference(LOG_READER_CLASS)) != null) {
 logreader = (LogReaderService) bc.getService(sr);
 }
 }
 }

Reference to the
LogService object

Reference to
LogReaderService

Here’s getServices

private final static String LOG_CLASS = "org.osgi.service.log.LogService";
private final static String LOG_READER_CLASS = "org.osgi.service.log.LogReaderService";

 private LogService log = null;

 private LogReaderService logreader = null;

 synchronized void getServices(BundleContext bc) {
 ServiceReference sr = null;

Implement the
logged method
from LogListener

Gets messages as
they are logged
and displays them

 public void logged(LogEntry entry) {
 try {
 System.out.println(entry.getMessage());
 } catch (Exception e) {
 System.err.println(e.getMessage());
 return;
 }
 }

}

Chapter 3 Using the Log Service 63

Discovering the Configurable Interface

The JES log service includes methods you can use to configure the size and severity
threshold of the log. Please note that these methods are not made publicly available
in the JES API. You must discover them by using reflection with a configuration
object (an object that implements org.osgi.framework.Configurable).

The methods that you use to configure the log are listed below:

public int getLogSize ()
public synchronized setLogSize (int size)
public int getSeverityThreshold ()
public void setSeverityThreshold (int threshold)

When you use reflection to discover these methods, the output of the reflection looks
like this:

Method: getLogSize
Current Log size = 20 LogEntry elements.

Method: setLogSize
Size should be set to 50

Method: getLogSize
New Log size = 50 LogEntry elements.

Method: getSeverityThreshold
Current severity threshold = 4

Method: setSeverityThreshold
Severity threshold should be set to 2

Method: getSeverityThreshold
New severity threshold = 2

When you configure the log’s size, remember that its minimum size of is 1, its
maximum size is 1,000,000, and its default size is 20. If you set the size of the log less
than the current size, only the most recently logged messages are kept. If you make
the size of the log greater than the current size, the log service creates a new log,
copies all previous messages to it, and adds space for the additional entries.

64 JES 2.0 Developer Guide • 8/25/2000

The severity threshold is the log level at or below which entries are added to the log.
For example, if you set the severity level to 4, entries with a log level of 4 or lower
(that is, all entries) are added to the log. The severity threshold can be between 1 and
4, unless you extend the LogService interface to add more levels.

When you set the severity threshold to a new value, future log entries are only
placed in the log if their levels are at or below the severity threshold level. When the
threshold level is 4 (LOG_DEBUG, the default), entries of all levels are added to the
log.

The log size and severity threshold are stored in a properties file on the embedded
server’s filesystem (if one exists) after the JES framework is shut down.

You can find an example of how to use reflection to discover the configurable
interface in your jes2.0/docs/examples/LogReflect.

Using the Log Properties

You can also set the log size and severity threshold when you start the JES
framework. Start JES 2.0 from the command line, using a java command with the
-D option, followed by a property name and value, for example:

java -Dcom.sun.jes.service.log.size=200000 -jar framework.jar

The properties that affect the log service and their values are listed below:

com.sun.jes.service.log.size Minimum 1, maximum 1000000, default 20

com.sun.jes.service.log.threshold 1, 2, 3, or 4; default 4

65

CHAPTER 4

Device Discovery and Access

Overview
The Java Embedded Server provides support for automatically discovering and
accessing devices. It contains a device manager designed to comply with the OSGi
specification, as well as a sample implementation of the DriverLocator service.
The device manager discovers new devices by listening for registration of Device
services with the framework registry. Once a device is registered, the device
manager uses the DriverLocator service to find and download the drivers
necessary to access the various representations of the device. The JES
implementation of the DriverLocator service works in conjunction with a web
server where it is assumed that all drivers are present. Typically, device
manufacturers and gateway operators provide the necessary driver and device
services. A sample implementation has been provided to demonstrate how device
discovery and access works.

How Device Discovery and Access Works
To demonstrate device discovery and access, we describe how a JES gateway might
discover and access a Hewlet Packard Laserjet printer with a USB connector. For this
example, we assume a gateway manufacturer has provided a USBDriver service
with the JES gateway.

1. The USBDriver service listens for any device that attaches to a USB port. When
the printer is hooked up, it communicates some of its basic properties. The driver
discovers the printer and registers a USBDevice service with those properties. The
USBDevice service represents the printer as a generic USB device, with no
methods specific to printers.

66 JES 2.0 Developer Guide • 8/25/2000

2. The device manager listens for registration of any services that implement the
Device interface. When the USBDevice service is registered, the device manager
calls the findDrivers method on all registered DriverLocator services,
passing the properties registered with the USBDevice service to the
DriverLocator .

3. The DriverLocator service queries a web server for drivers that may be
appropriate for the USB device. The findDrivers method returns zero or more
DRIVER_ID values. The device manager tells the DriverLocator to download the
bundles. The bundles are downloaded, installed, and started.

4. The device manager calls match on each newly downloaded driver and then calls
attach on the driver that matches best, the HPPrinterDriver . The
HPPrinterDriver.attach method creates a dependency between the driver and
the USBDevice service. The chosen driver then registers a new
HPPrinterDevice service with methods for accessing printer functionality.

Chapter 4 Device Discovery and Access 67

The process for finding, downloading, matching and attaching drivers and
registering devices services (step 2, 3 and 4 in this sequence) continues until no more
refined drivers can be found.

FIGURE 4-1 Detecting a Printer

HP Printer

Web Server

Device
Manager

Driver
Locator

driver1

driver2
driver3

driver4

Framework

Java Virtual Machine

Operating System

USB
Driver

USB
port

68 JES 2.0 Developer Guide • 8/25/2000

69

APPENDIX A

JES 2.0 System Properties

70 JES 2.0 Developer Guide • 8/25/2000

JES System Properties

Java applications use system properties instead of environment variables to gather
system information, because environment variables are platform dependent. The
Java interpreter (the java command used to run an application) uses a standard list
of system properties that you can find in most Java programming guides.

JES 2.0 also defines system properties that you can use when starting the JES
framework. You can set system properties in several different ways:

■ When you run the runjes script:
runjes -j -Dcom.sun.jes.service.http.minHandlers=0

■ At the JES framework command prompt:
> set com.sun.jes.service.http.minHandlers=0

■ When you start JES from the command line with the java command:
java -Dcom.sun.jes.service.http.minHandlers=2

-jar framework.jar

You can also get the current value of a system property from the JES framework
command line, like this:

■ > get com.sun.jes.service.http.minHandlers

The JES 2.0 system properties and their allowed values are listed in TABLE A-1.

TABLE A-1 System Properties You Can Set for JES 2.0

Service Property Name Description and Value

HTTP com.sun.jes.service.http.hostname The host name used in the URL of a
registered servlet or resource. If you do not
specify a value, the default is the host on
which JES is running. If that host is multi-
homed, the HTTP service accepts
connections on any host.

com.sun.jes.service.http.port The port number used in the URL of a
registered servlet or resource. Default
values are 8080 for HTTP and 443 for
HTTPS.

com.sun.jes.service.http.minHandlers An integer specifying the minimum
number of handlers the HTTP service uses.
Default value is 0.

Appendix A JES 2.0 System Properties 71

com.sun.jes.service.http.maxHandlers An integer specifying the maximum
number of handlers the HTTP service uses.
Default value is 4.

com.sun.jes.service.http.use.log.service A Boolean value that indicates whether
messages are displayed on stderr or sent to
the log. The only valid value is true. If the
value is true and the log service is
registered, the JES HTTP service directs
exception messages to the log. If the value
is true and the log service is not registered,
messages are displayed on stderr. By
default, the value is not set and messages
are displayed on stderr.

SSL com.sun.jes.service.ssl.isSupported A Boolean value that determines whether
your JES installation enables Secure Sockets
Layer (SSL) connections. If the value is
false, the SSL service starts but doesn’t do
anything. Default value is true.

com.sun.jes.impl.keystore.store An URL indicating where to get keystore
contents for the SSL service’s keystore.
When you start JES, the runjes script sets
this property to the example keystore file
lib/tlscerts. If the value is empty or
incorrect, the SSL service fails. No default
value.

com.sun.jes.impl.keystore.access An encoded password for the example
keystore lib/tlscerts. If the value is empty
or incorrect, the SSL service fails. To set the
password, you must use the JDK keytool to
change it in the keystore, then the JES bin/
encodepw script to encode it and add it to
this property. No default value.

User com.sun.jes.service.http.auth.users.defaultAdminName The login name for the default
administrator of the User Management
bundle. If you set the administrator name
without setting the password (below), the
password is the same as the administrator
name. This property is only used once,
when the httpusers bundle is started, and it
cannot be used by other bundles. Default
value is admin.

TABLE A-1 System Properties You Can Set for JES 2.0

72 JES 2.0 Developer Guide • 8/25/2000

com.sun.jes.service.http.auth.users.defaultAdminPassword The password for the default administrator
of the User Management bundle. This
property is only used once, when the
httpusers bundle is started, and it cannot
be used by other bundles. Default value is
admin.

com.sun.jes.service.http.auth.users.defaultUserName The login name for the default user of the
User Management bundle. If you set the
user name without setting a password
(below), the password has the same value
as the name. This property is only used
once, when the httpusers bundle is started,
and it cannot be used by other bundles.
Default value is guest.

com.sun.jes.service.http.auth.users.defaultUserPassword The password for the default user of the
User Management bundle. This property is
only used once, when the httpusers bundle
is started, and it cannot be accessed by
other bundles. Default value is guest.

Log com.sun.jes.service.log.size An integer specifying the number of entries
in the JES log. Minimum value is 1,
maximum is 1000000, default is 20.

com.sun.jes.service.log.threshold The level at or below which entries are
added to the log. The allowed values are:

• 1 for an error message
• 2 for a warning message
• 3 for an informational message
• 4 for a debugging message.

Default value is 4, meaning that entries
with a log level of 4 or below are logged.

Device com.sun.jes.device.debug A value that activates the debugging mode
for device access and displays messages to
output. To turn on debugging, use the
value on. Any other value turns debugging
off. No default value.

TABLE A-1 System Properties You Can Set for JES 2.0

Appendix A JES 2.0 System Properties 73

com.sun.jes.driverlocator.servletURL The URL of the JES FindDriverServlet
servlet on the Web server where device
drivers are located. FindDriverServlet
finds and loads device drivers from the
Web server. No default value.

Framework com.sun.jes.framework.filesystem.available A Boolean value specifying whether a local
filesystem is available for the JES
framework to use. If set to false, the local
disk cache and the jescache directory are
disabled. Support for platforms not having
a filesystem will be added in a future
release. Default value is true.

com.sun.jes.framework.cache.dir The pathname to the cache directory, set in
the Java system property user.home.
Default value is the directory jescache in
your home directory (for Solaris) or on
your default drive (for Windows).

com.sun.jes.framework.debug A comma-separated list of the following
options:

• help - prints messages about debug
options
• all - turns on all debugging
• bcl - turns on debugging for bundle
classloading
• event - turns on debugging for event
handling
• fw - turns on debugging for the
framework
• filter - LDAP filter parsing and
evaluation

Examples:
com.sun.jes.framework.debug=all
com.sun.jes.framework.debug=bcl,fw

com.sun.jes.framework.bundles.baseurl An URL of any type that points to the
location of bundles. This property is
ignored when the URL starts with ./ or .\.
Default value is file:/currentDirectory.

TABLE A-1 System Properties You Can Set for JES 2.0

74 JES 2.0 Developer Guide • 8/25/2000

com.sun.jes.framework.exception.trace If true, the exception stack trace (including
that of a nested BundleException) is
displayed. If false, just the exception name
and message (including those of a nested
BundleException) are displayed. Default
value is true.

com.sun.jes.framework.max.open.jars An integer specifying the maximum
number of bundle JAR files that can be kept
open in memory. Default value is 4.

com.sun.jes.framework.events.synchronous A flag indicating whether events are
delivered synchronously. If true, all events
are delivered synchronously; if false, only
ServiceEvent events are. Default value is
false.

TABLE A-1 System Properties You Can Set for JES 2.0

