
CHAPTER 1

Using the HTTP Service
1

Overview of the JES HTTP Service

The Java Embedded ServerTM framework includes a core HTTP service that allows

you to write services that serve resources to the Internet. For example, you might be

building a video camera service that would allow your customers to view certain

locations in their home from a website.

The main job of the core HTTP service is to serve servlets and resources to the

Internet. Servlets are JavaTM classes based on the Java Servlet API, while resources

can be HTML files, JSP files, or classes from bundles. The HTTP service maps

resources to an URL namespace. A namespace is the part of the Internet’s domain

name system that the server controls, for example, all of the URL names that begin

with http://myserver.com. This means that when a client requests an URL that falls

within the server’s namespace, the server delivers the corresponding resource using

HTTP. The HTTP service can use either HTTP 1.1 or HTTP 1.0.

The HTTP service contains a Web server with listeners and handlers. Each listener

corresponds to a port number for a Web server (for example, myserver.com:8080) and

listens for HTTP requests. Handlers respond to the requests. The structure is that the

HTTP server has a number of listeners and each listener has a number of handlers.

FIGURE 1-1 Conceptual Structure of the HTTP Server

HTTP Server

Listener Listener

Handler Handler

server:port server:port
2 JES 2.0 Developer Guide • 8/25/2000

The handlers are dynamically assigned to the listeners and the number of handlers

varies according to the load the HTTP server is experiencing. You can configure the

minimum and maximum number of handlers by setting system properties, as

described in Appendix A.

To use the JES HTTP service, you need to write at least two components:

1. A client service that calls the HTTP service’s API (contained in the com.sun.jes.

service.http.HttpService interface, which extends org.osgi.service.http.HttpService).

2. An HTTP client, the object that actually requests a resource from the HTTP

service, which is usually a Java servlet. You can write the Java servlet directly or

generate it from a JSP file using the JES 2.0 JSP runtime tool (about which you can

find more information in README-tcatjsp.txt in the JES 2.0 build).

In other words, you often need to write both a service and a servlet, or write a

service and use the JSP runtime tool to create a servlet. In either case, you’ll need

access to the Java Servlet 2.1 API, available on the Internet at http://java.sun.com/products/

servlet/2.1. In addition, the JES HTTP service supports both HTTP 1.0 and HTTP 1.1.

Registering Servlets and Resources

Because the JES HTTP service allows you to register Java servlets, it is aware of the

servlet request-response model. Essentially, a servlet is an HTTP response to an

HTTP request.

MIME stands for MultiPart Internet Mail Extensions and is the standard describing

the different types of messages that can be sent across the Internet. This means that

the HTTP service sends the servlet an request with a MIME body type, and the

servlet sends back a response with a MIME body type. (For more information on

MIME, you can look up the HTTP Request for Comments documents (RFCs) 1521

and 1522 on the Internet.)

But the servlet model is essentially that simple: the server sends a request, and the

servlet sends back a response. A servlet that works with the core HTTP service uses

HTTP as its protocol. This means that it typically extends HttpServlet (from the javax.

servlet.http package) and uses an HttpServletRequest object as its request and an

HttpServletResponse object as its response.
Chapter 1 Using the HTTP Service 3

The JES HTTP service requires that you register both servlets and resources (which

are the HTML files, JSP files, images, or Java classes that the servlet might use to

deliver content to the client). Both servlets and resources must be registered with an

HttpContext object, which maps a resource name to an URL. This means that when

you submit an URL to the HTTP service, it locates the corresponding resource and

responds.

What Registering Servlets Does

Servlets written according to the Java Servlet API allow your service to deliver

dynamic content to the World Wide Web. Specifically, servlets do this by sending out.

println statements that contain valid HTML or that call resources to the client Web

browser. (You can also write JSP files to deliver dynamic content, rather than writing

servlets directly. If you’re interested, you should investigate the JES JSP runtime

compiler with the Tomcat Web server; see the README-tcatjsp.txt file for more

information.) Resources include images, HTML files, or any other type of object the

servlet needs to deliver the content.

To make servlets available to the JES HTTP service, your bundle must register them.

In general, your bundle registers a servlet when the HTTP service is registered,

listening for an event to detect this. The JES HTTP service in turn uses a context

object (created with HttpContext) to get information about the servlet, particularly the

servlet’s URL. The HTTP service then starts the servlet by calling its service

method, causing the servlet to respond to the HTTP request. Registering a servlet

gives the servlet access to part of the server’s URI namespace, so that you can access

the servlet on the server.

You can define an implementation of HttpContext yourself, or you can pass a null value

instead of an HttpContext object, causing the JES HTTP service to use a default value

for the context object. In either case, the context object defines such things as the

MIME type the servlet uses for its response to the client, the URL at which the

servlet is registered, and whether the HTTP service should service the request.

What Registering Resources Does

Your servlet typically uses resources such as images of HTML files. Registering

resources makes them visible in the server’s URI namespace, so that a bundle has

access to them by a certain URL. Resources can be packaged into a bundle’s JAR file,

available on a filesystem before the bundle is installed, or created by the bundle.
4 JES 2.0 Developer Guide • 8/25/2000

Registering resources in an HTTP client service is similar to registering servlets,

except that resources are typically registered as bundles. When you register a

resource, you still create an HttpContext object (created from org.osgi.service.http.

HttpContext or a class that implements it) to give the JES HTTP service information

about the resource. You then use the registerResources method from HttpService to map

a resource name to an alias name, so that the resource can be retrieved by its alias.

Because the resource is within a bundle, it gets a special bundle URL that looks like

bundle:// id/ path, for example, bundle:// 1224/ images/ foo.gif. The id is the unique bundle

ID assigned when the bundle is registered and available with the getBundleId method.

The path is the path to the resource within the bundle or on the filesystem.

Handling Service Dependencies

When you register resources and servlets, you should do so in response to events.

Events mark a change in a service’s lifecycle. For example, an event fires when a

service is registered or unregistered. Your service depends on the JES HTTP service,

so you should register servlets and resources when the HTTP service is registered

and unregister them when the HTTP service is unregistered.

The HTTP service may already be registered when you start your bundle activator

class, or it may become registered while your bundle activator is running. Your

bundle activator needs to handle both situations. Specifically, you need to register

both within the start method, after checking that the HTTP service is already

running, and also within the serviceChanged method in response to a REGISTERED

event.

You then unregister your servlets and resources in response to an UNREGISTERING

event (CODE EXAMPLE 1-1 makes this more clear). When you register and unregister

in response to events, the JES framework uses symbol resolution to resolve service

dependencies.

The servlet and resource registrations last as long as the JES HTTP service is

registered with the framework. You should always unregister servlets explicitly with

the unregister method, which calls the servlet’s destroy method and stops the servlet. If

you don’t use unregister, the servlet’s alias would be unregistered, but the servlet itself

and any threads accessing it still exist.
Chapter 1 Using the HTTP Service 5

Because other services may in turn depend on your service, never call the

BundleActivator.stop method in your bundle activator class. As CODE EXAMPLE 1-1

shows, you should declare it but not implement it. You should only use

BundleActivator.stop in the context of Bundle.stop, so that your bundle is stopped

correctly.

The httpRegister Method

The main work of CODE EXAMPLE 1-1 is done by the httpRegister method, which is

defined within the TestBundle class. httpRegister does the work of registering the

resources and servlets when a REGISTERED event occurs.

The first thing that httpRegister does is create an HttpContext object. You must always

create an HttpContext object, as the JES HTTP service uses the HttpContext object to get

information about the servlet’s registration. To create an HttpContext object, you must

implement its methods, handleSecurity, getMimeType, and getResource, either in the

BundleActivator class or in another class.

The implementation of these methods in CODE EXAMPLE 1-1 is very simple. The

handleSecurity method returns true so that the JES HTTP service will service the

request; the getMimeType method returns null to allow the JES HTTP service to

determine the MIME type the servlet returns; and the getResource method returns an

URL. For a more complete implementation of these methods, especially handleSecurity,

see “Using Basic Authentication” later in this chapter.

The httpRegister method then registers resources and servlets using the registerResources

and registerServlet methods. These methods map a resource to an URL. For example,

the method call

hs.registerServlet("/block", block, null, null);
6 JES 2.0 Developer Guide • 8/25/2000

registers the servlet object named block to the alias /block, so that is available from

the URL http://yourServer:yourPortNumber/block. The complete rules of alias mapping

that you use in the registerServlet and registerResources methods are summarized in

TABLE 1-1.

TABLE 1-1 Specifying Aliases in JES 2.0

Alias Definition

Default host name Defined in com.sun.jes.service.http.hostname.
Otherwise, accepts connections from any host. A

JES extension.

Default port number Defined in com.sun.jes.service.http.port.
Otherwise, the default port number is 8080 for

http and 443 for https. On UNIX systems, you

need root privilege to bind to a port number

below 1024. A JES extension.

/a Specifies the alias /a after the default host name

and port number.

/a/b Specifies the alias /a/b after the default host name

and port number.

http://host:port/alias Specifies a host name, port number, and servlet

alias. A JES extension.

http://host/alias Uses the default port number from com.sun.jes.
service.http.port. Otherwise, uses 8080 as the

default port number for http and 443 as the

default port number for https. A JES extension.

http://*:port/alias Registers the servlet, using any local host, the

specified port number, and the specified alias. A

JES extension.
Chapter 1 Using the HTTP Service 7

▼ To Register Servlets and Resources

1. Write a bundle activator class that implements BundleActivator and ServiceListener.

2. Implement the BundleActivator.start method.

3. Within the start method, register a service listener for the JES HTTP service, get
a reference to the service, get the service itself, and register your servlets and
resources, if the HTTP service has been started before the bundle activator
class.

4. Implement the serviceChanged method, listening for REGISTERED events and
registering servlets and resources if the HTTP service is registered after the
bundle activator class is started.

5. Also in serviceChanged, listen for an UNREGISTERING event and unregister your
resources if the JES HTTP service is unregistered.

6. Declare the BundleActivator.stop method, but do not call it within your bundle
activator class. You should only call this method within Bundle.stop.

▼ Classes and Methods

TABLE 1-2 Classes and Methods for Registering Servlets and Resources

Class, Interface, or Package Methods

org.osgi.framework.BundleActivator start, stop

org.osgi.service.http.HttpContext getMimeType, getResource, handleSecurity

org.osgi.service.http.HttpService registerServlet, registerResources, unregister

org.osgi.framework.BundleContext getServiceReference, getService,
addServiceListener

org.osgi.framework.ServiceListener serviceChanged

org.osgi.framework.ServiceEvent getType

java.net.URL openConnection

java.net.URLConnection getInputStream
8 JES 2.0 Developer Guide • 8/25/2000

CODE EXAMPLE 1-1 TestBundle.java (OSGi-compliant)

package test;

import java.net.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import org.osgi.framework.*;
import org.osgi.service.http.*;

Implement
BundleActivator
and
ServiceListener

public class TestBundle implements BundleActivator, ServiceListener {

 private HttpService service;
 private ServiceReference ref;
 private BundleContext bc ;
 private byte[] buffer = new byte[2048];
 private ByteArrayOutputStream baos = new ByteArrayOutputStream(2048);

Get the bundle
context from the
framework

Add a service
listener for the
HTTP service

public void start(BundleContext bc) throws BundleException {

this.bc = bc;

try {
bc.addServiceListener(this, "(objectClass=org.osgi.service.http.HttpService)");

} catch (InvalidSyntaxException e) {
throw new BundleException("Could not register HttpService " + "event listener", e);

}

Get a reference to
the HTTP service
and the service
itself

Register here if the
HTTP service is
already registered

Call httpRegister(),
defined below

ref = bc.getServiceReference("org.osgi.service.http.HttpService");
if (ref != null) {

service = (HttpService)bc.getService(ref);

httpRegister();
}

}

Leave the stop
method empty

public void stop(BundleContext bc) throws BundleException { }
Chapter 1 Using the HTTP Service 9

Always make these
lines synchronized

Check to see if an
HTTP service is
already registered

If so, get the
original HTTP
service registered

Then, register
servlets and
resources

public void serviceChanged(ServiceEvent event) {

synchronized (this) {
int etype = event.getType();
if (etype == ServiceEvent.REGISTERED) {

if (service == null) {
ref = bc.getServiceReference("org.osgi.service.http.HttpService");

if (ref != null) {
service = (HttpService)bc.getService(ref);

httpRegister();
}

}

When a service is
unregistered, get
its service
reference

If it’s the same as
the one originally
registered,
unregister servlets
and resources

} else if (etype == ServiceEvent.UNREGISTERING) {
ServiceReference sr = event.getServiceReference();

if (sr.equals(ref)) {
service.unregister("/alias");

bc.ungetService(ref);
service = null;

}
}

}
}

Define
httpRegister

Implement the 3
methods required
by HttpContext

private void httpRegister() {

HttpContext hc = new HttpContext () {
public boolean handleSecurity(HttpServletRequest req, HttpServletResponse res) {

return true;
}

public String getMimeType(String name) {
return null;

}

10 JES 2.0 Developer Guide • 8/25/2000

public URL getResource(String path) {
URL u = getClass().getResource(path);
System.out.println("url = " + u);
return u;

}
};

Register resources
and create an URL

try {
service.registerResources("/alias", "/resources", hc);

URL url = new URL("http://laguna:8080/alias/foo.txt");

System.out.println("Opening URL connection ...");
URLConnection uc = url.openConnection();

InputStream is = uc.getInputStream();
System.out.println(new String(getBytes(is)));
is.close();

} catch (Exception e) {
e.printStackTrace();

}
}

private byte[] getBytes(InputStream is) throws IOException {
int n;
baos.reset();
while ((n = is.read(buffer, 0, buffer.length)) != -1) {

baos.write(buffer, 0, n);
}
return baos.toByteArray();

}
}

Chapter 1 Using the HTTP Service 11

How To Write a Servlet

The Java Servlet API consists of two packages, javax.servlet and javax.servlet.http. The

two most important parts of the Java Servlet API (in the context of the JES HTTP

service) are the javax.servlet.Servlet interface and the javax.servlet.http.HttpServlet class. A

servlet that you use with the JES HTTP service should always extend HttpServlet,

which implements Servlet through its superclass, GenericServlet.

The Servlet interface declares the three most common servlet methods—init, service,

and destroy. (Remember that the registerServlet method calls service and the unregister

method calls destroy.) When you extend HttpServlet to write a servlet that receives

requests and returns responses by way of HTTP, you should always override at least

one of its doXXX methods.

HttpServlet has a default implementation of service that dispatches requests to doGet,

doPost, doPut, and other methods, according to the HTTP command that the servlet

has received. An HTTP command is exchanged between the client and the server at

the beginning of the request. An HTTP GET command would look something like

this:

GET /index.html HTTP/1.1

Because many requests are GET requests, a servlet you write for the JES HTTP

service will typically extend HttpServlet, implement a doGet method, and return HTML

to the client Web browser by a number of out.println statements.

CODE EXAMPLE 1-2, which shows the beginning of SnoopServlet.java, is a simple

example of how to write an HttpServlet.

First, notice that SnoopServlet extends HttpServlet. This is standard practice for servlets

that return HTML to a Web browser by HTTP. SnoopServlet also happens to

implement org.osgi.service.http.HttpContext, because it defines methods that the JES

HTTP service can call to get information about a servlet’s registration.

After defining a default user name and password (admin for each) and a constructor,

SnoopServlet starts with a doGet method. doGet is passed two objects: HttpServletRequest,

which contains the information the user sent as a request, and HttpServletResponse,

which allows the servlet to make a response.
12 JES 2.0 Developer Guide • 8/25/2000

CODE EXAMPLE 1-2 The Beginning of SnoopServlet.java (JES-compliant)

package snoopbasic;

import java.io.*;
import java.util.*;
import java.net.*;
import javax.servlet.*;
import javax.servlet.http.*;

import org.osgi.framework.*;
import org.osgi.service.http.*;

import com.sun.jes.service.http.auth.basic.*;

These lines are
specific to the
JES and OSGI
APIs

public class SnoopServlet extends HttpServlet implements HttpContext {

 private final String USER = "admin";
 private final String PASS = "admin";

 SnoopActivator bc;

 public SnoopServlet (SnoopActivator bundleContext) {
bc = bundleContext;

 }

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

PrintWriterout;

res.setContentType("text/html");
out = res.getWriter ();

out.println("<html>");
out.println("<head><title>Snoop Servlet</title></head>");
out.println("<body>");

out.println("<h1>Request information:</h1>");
out.println("
");
out.println("
");

.

.

.

Chapter 1 Using the HTTP Service 13

The doGet method does four things. First, it creates a PrintWriter object that will

become the output stream for data sent back to the client. Next, it sets the response

type to text/html, indicating that the servlet produces standard HTML as its output.

Third, doGet uses the getWriter method of the HttpServletResponse object to send a

response of type java.io.PrintWriter (remember that the response is encoded with MIME

type text/html) back to the client.

Because the response object is created when the user’s request is made, it points

correctly to the client that made the request. Once all that is done, doGet uses out.

println statements to send HTML tags that the client Web browser can interpret and

display as a Web page. This pattern is typical of doGet methods.

To summarize, a servlet you write for the JES HTTP service usually does the

following:

■ Extends javax.servlet.http.HttpServlet

■ Implements doGet or another doXXX method that receives requests from the

servlet’s default service method

■ Sets the response type, usually to text/html

■ Creates a PrintWriter object and sets it to the return value of the getWriter method to

send the response

■ Uses out.println statements to send HTML to the client

These points are all basic to HTTP servlets. In addition, SnoopServlet takes steps that

are specific to the JES and OSGI APIs and that are explained in more detail in “Using

Basic Authentication.”

You may also want to check these excellent references for more information about

writing Java servlets:

■ Java Servlet Programming, Jason Hunter with William Crawford, O’Reilly &

Associates, 1998

■ Java Enterprise in a Nutshell: A Desktop Quick Reference, Servlets chapter, David

Flanagan et al, O’Reilly & Associates, 1999

■ Java Servlet Specification, Version 2.1, Sun Microsystems, November 1998,

available at http://java.sun.com/products/servlet

Note that JES 2.0 supports the Java Servlet API 2.1 and does not include the concept

of sandboxed servlets that have security restrictions on which files they can access.
14 JES 2.0 Developer Guide • 8/25/2000

Using Basic Authentication

HTTP 1.1 provides built-in support for basic authentication. Basic authentication, as

describedin RFC 2617, is very simple and does not provide the highest level of

security. However, all browsers support it, so it is used here as an example of how to

implement the HttpContext.handleSecurity method.

Basic authentication is based on a challenge/response, username/password model.

When you register servlets or resources, you can provide a special implementation

of handleSecurity. When a client makes a request for some URL at which you have

registered a servlet or resource, the server checks if the request has proper

authentication information in its request headers. If not, the server provides a

challenge to the client.

The challenge causes the Web browser to display a dialog box in which the user

enters a name and password that are sent back to the server. If a user with the given

name and password has been configured on the server, the HTTP service honors the

request. With Java Embedded Server, basic authentication uses both the JES

HttpService and the BasicSchemeHandler service.

Basic authentication has some inherent weaknesses. For instance, the user name and

password are transmitted directly over the Internet in clear text. Anyone monitoring

the network stream would have direct access to them. Basic authentication is simply

used here as an example of how to implement handleSecurity.

The examples that follow show a servlet, SnoopServlet.java, that implements HttpContext

and its three methods—getMimeType, getResource, and handleSecurity—and a bundle

activator class, SnoopActivator.java, that uses an instance of SnoopServlet as its context

object.
Chapter 1 Using the HTTP Service 15

▼ To Use Basic Authentication

1. Write a servlet that extends HttpServlet and implements HttpContext.

2. Specify a user name and password in the servlet.

3. Write a doGet method that checks the request headers for authorization
information.

4. Write simple implementations of HttpContext.getResource and HttpContext.
getMimeType.

5. Write an implementation of handleSecurity that uses a challenge/response model
to request a user name and password.

6. Write a bundle activator class that implements BundleActivator and ServiceListener.

7. Get references to both the HttpService and BasicSchemeHandler service.

8. Use the references to obtain both the services.

9. Write a serviceChanged method that listens for events and calls a register method
to register the servlet.

10. Write a register method that actually does the work of registering the servlet.

11. Declare a stop method, but leave its implementation empty.

▼ Classes and Methods

Class, Interface, or Package Methods

javax.servlet.http.HttpServlet service, doGet

org.osgi.service.http.HttpContext getMimeType, getResource, handleSecurity

org.osgi.framework.BundleActivator start, stop

org.osgi.framework.ServiceListener serviceChanged

org.osgi.framework.ServiceEvent getServiceReference, getType

org.osgi.framework.BundleContext addServiceListener

org.osgi.service.http.HttpService registerServlet, registerResources, unregister

com.sun.jes.service.http.auth.basic.
BasicSchemeHandler

getResponse, sendChallenge

com.sun.jes.service.http.auth.basic.
BasicSchemeHandler.Response

getName, getPassword
16 JES 2.0 Developer Guide • 8/25/2000

CODE EXAMPLE 1-3 SnoopActivator.java (JES-compliant)

Import the http
and http.auth.
basic packages

package snoopbasic;

import java.util.*;
import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;
import org.osgi.framework.*;

import org.osgi.service.http.*;
import com.sun.jes.service.http.auth.basic.*;

Implement
BundleActivator
and
ServiceListener

Define the alias
the servlet will
use

public class SnoopActivator implements BundleActivator, ServiceListener {

 SnoopServlet snoop = null;
 HttpService http;
 BasicSchemeHandler basic;
 ServiceReference httpref;
 ServiceReference httpauthref;

 final String SERVLET_ALIAS = "/snoopbasic";
 BundleContext bundleContext;

Implement a
start method

Get a reference
to the HTTP
service

public void start(BundleContext bc) throws BundleException {

bundleContext = bc;
snoop = new SnoopServlet(this);

httpref = bc.getServiceReference("org.osgi.service.http.HttpService");

if (httpref != null) {
http = (HttpService) bc.getService(httpref);
httpRegister();

}

Get a reference to the
Basic Scheme
Handler service

httpauthref =
bc.getServiceReference("com.sun.jes.service.http.auth.basic.BasicSchemeHandler");

if (httpauthref != null) {
basic = (BasicSchemeHandler) bc.getService(httpauthref);

}

Chapter 1 Using the HTTP Service 17

Add service
listeners for both
services

try {
bc.addServiceListener(this, "(objectClass=org.osgi.service.http.HttpService)");
bc.addServiceListener(this,

"(objectClass=com.sun.jes.service.http.auth.basic.BasicSchemeHandler)");
}

catch(InvalidSyntaxException ise) {
ise.printStackTrace();

}
 }

Unregister
servlets when
the HTTP
service is
unregistered

public synchronized void serviceChanged(ServiceEvent event) {

if (event.getType() == ServiceEvent.UNREGISTERING) {
if (event.getServiceReference().equals(httpref)) {

httpUnregister();
httpref = null;
http = null;

}
else if (event.getServiceReference().equals(httpauthref)) {

httpauthref = null;
basic = null;

}
}

Register
servlets when
the HTTP
service is
registered

else if (event.getType() == ServiceEvent.REGISTERED) {

httpref = bundleContext.getServiceReference("org.osgi.service.http.HttpService");
if (httpref != null && http == null) {

http = (HttpService) bundleContext.getService(httpref);
httpRegister();

}
 }

Get the Basic
Scheme
Handler service

httpauthref = bundleContext.getServiceReference(
"com.sun.jes.service.http.auth.basic.BasicSchemeHandler");

if (httpauthref != null && basic == null) {
basic = (BasicSchemeHandler) bundleContext.getService(httpauthref);

}
}

Define the
registration
method

Register the
servlet using the
servlet as the
context object

private void httpRegister() {

try {
http.registerServlet(SERVLET_ALIAS, snoop, null, snoop);

}

18 JES 2.0 Developer Guide • 8/25/2000

catch(ServletException se) {
se.printStackTrace();

}
catch(NamespaceException nse) {

nse.printStackTrace();
}

}

Define the
unregister
method

void httpUnregister() {
try {

http.unregister(SERVLET_ALIAS);
}
catch(IllegalArgumentException iae) { }
}

BasicSchemeHandler getBasicSchemeHandlerRef() {
return basic;

}

Leave the
implementation
of stop blank

public void stop(BundleContext bc) throws BundleException { }
}

Chapter 1 Using the HTTP Service 19

CODE EXAMPLE 1-4 SnoopServlet.java

Implement the
servlet
packages

Implement the
http and http.
auth.basic
packages

package snoopbasic;

import java.io.*;
import java.util.*;
import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;

import org.osgi.framework.*;
import org.osgi.service.http.*;
import com.sun.jes.service.http.auth.basic.*;

Extend
HttpServlet and
implement
HttpContext

Define a user
name and
password

public class SnoopServlet extends HttpServlet implements HttpContext {

private final String USER = "admin";
private final String PASS = "admin";

SnoopActivator bc;

public SnoopServlet(SnoopActivator bundleContext) {
bc = bundleContext;

}

Implement a
doGet method

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

PrintWriterout;

res.setContentType("text/html");
out = res.getWriter ();

out.println("<html>");
out.println("<head><title>Snoop Servlet</title></head>");
out.println("<body>");

out.println("<h1>Request information:</h1>");
out.println("
");
out.println("
");
20 JES 2.0 Developer Guide • 8/25/2000

Get info from the
request headers
sent by the
client

print(out, "Request method", req.getMethod());
print(out, "Request URI", req.getRequestURI());
print(out, "Request protocol", req.getProtocol());
print(out, "Servlet path", req.getServletPath());
print(out, "Path info", req.getPathInfo());

print(out, "Path translated", req.getPathTranslated());
print(out, "Query string", req.getQueryString());
print(out, "Content length", req.getContentLength());
print(out, "Content type", req.getContentType());
print(out, "Server name", req.getServerName());

print(out, "Server port", req.getServerPort());
print(out, "Remote user", req.getRemoteUser());
print(out, "Remote address", req.getRemoteAddr());
print(out, "Remote host", req.getRemoteHost());
print(out, "Authorization scheme", req.getAuthType());

out.println("
");
out.println("
");
out.println("</body></html>");

out.flush();
 }

Print the user’s
name

private void print (PrintWriter out, String name, String value) {
out.print(" " + name + ": ");
out.println(value == null ? "<none>" : value);
out.println("
");

}

private void print (PrintWriter out, String name, int value) {
out.print(" " + name + ": ");
if (value == -1) {

out.println("<none>");
} else {

out.println(value);
}

}

Implement the
three methods
required by
HttpContext

public URL getResource(String str) {
return null;

}

 public String getMimeType(String str) {
return null;

}

Chapter 1 Using the HTTP Service 21

Implement
handleSecurity

handleSecurity
is called for each
request to the
servlet

public boolean handleSecurity(HttpServletRequest req, HttpServletResponse res) {

BasicSchemeHandler basic = bc.getBasicSchemeHandlerRef();
BasicSchemeHandler.Response response = basic.getResponse(req);

Display a dialog
box for the user
to log in

Return false to
display the user
name and dialog
box

if (response == null) {
try {

basic.sendChallenge(res, "dummy");
}
catch(IOException ioe) {

ioe.printStackTrace();
}
return false;

}

Get the user
name and
password

If the user name
and password
don’t pass the
check, display
the dialog box

String user = response.getName();
String password = response.getPassword();

if (! check(user, password)) {
try {

basic.sendChallenge(res, "dummy");
}
catch(IOException ioe) {

ioe.printStackTrace();
}
return false;

}

return true;
 }

Define the
check method

boolean check(String user, String pass) {
if (USER.equals(user) && PASS.equals(pass)) {

return true;
}
return false;

 }

}

22 JES 2.0 Developer Guide • 8/25/2000

Using the HttpAdmin Service

Once you register your servlets and resources, you can get information about them

by using the HttpAdmin service. HttpAdmin works with HttpService. The two services are

always registered together, so HttpAdmin is always registered when HttpService is.

HttpAdmin exposes two methods—getResourceRegistrations and getServletRegistrations, each

of which return an array of HttpRegistration objects. An HttpRegistration object has five

basic parts: the alias name, a bundle object, an HttpContext object, a resource name or

servlet object, and an URL. You extract these parts with the methods the

HttpRegistration interface contains:

public java.lang.String getAlias ()
public javax.servlet.Servlet getServlet ()
public java.lang.String getResourceName ()
public java.net.URL getURL (java.lang.String defaultHost) throws java.net.MalformedURLException
public HttpContext getHttpContext ()
public Bundle getBundle ()

CODE EXAMPLE 1-5 shows how to use an HttpRegistration object. The example is the Java

servlet that displays the Home Portal that is shipped with the Java Embedded

Server. This example happens to be a servlet, but you can use the HttpRegistration

object outside of a servlet as well. The servlet also implements basic authentication,

which you learned about in the previous section.

Remember that you must have the HttpService and HttpAdmin services running in order

to run this example. In this release, the two services always start together.
Chapter 1 Using the HTTP Service 23

▼ To Use the HttpRegistration Object in a Servlet

1. Write a class that extends HttpServlet and implements HttpContext.

2. Get references to the BasicSchemeHandler and UserPasswordService services, then get
the services themselves.

3. Write a doGet method to return data to the client. Be sure to set the content type
and get a PrintWriter object.

4. Get a reference to the HttpAdmin service, then get the service itself.

5. Get the array of servlet registrations.

6. Move through the array, taking action on each servlet. Remember that you can
use any of the methods in HttpRegistration.

7. Write a doPost method, if your servlet is likely to receive POST requests.

8. Implement HttpContext and its getResource, getMimeType, and handleSecurity
methods. If you like, you can use basic authentication, as described in the
previous section.

▼ Classes and Methods

TABLE 1-3 Classes and Methods for Using an HttpRegistration Object

Class, Interface, or Package Methods

javax.servlet.http.HttpServlet doGet, doPost

org.osgi.service.httpHttpContext getResource, getMimeType, handleSecurity

org.osgi.framework.BundleContext getService, getServiceReference

com.sun.jes.service.http.HttpAdmin getResourceRegistrations,
getServletRegistrations

com.sun.jes.service.http.HttpRegistration getAlias, getBundle, getHttpContext,
getResourceName, getServlet, getURL

javax.servlet.ServletResponse setContentType, getWriter

javax.servlet.ServletConfig getInitParameter

javax.servlet.Servlet getServletConfig
24 JES 2.0 Developer Guide • 8/25/2000

CODE EXAMPLE 1-5 HomePortalServlet.java (JES-compliant)

Import both
HttpRegistration
and HttpAdmin

Import both the
authorization
packages

package com.sun.jes.impl.homeportal;

import org.osgi.framework.*;
import org.osgi.service.http.*;

import com.sun.jes.service.http.HttpRegistration;
import com.sun.jes.service.http.HttpAdmin;

import com.sun.jes.service.http.auth.basic.*;
import com.sun.jes.service.http.auth.users.*;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.net.URL;

Get the localized
strings for
displaying in
different locales

public class HomePortalServlet extends HttpServlet implements HttpContext {

private static final LocalizedStrings ls = (LocalizedStrings)
java.util.ResourceBundle.getBundle("com.sun.jes.impl.homeportal.LocalizedStrings");

private HttpServletRequest myRequest;
private HttpServletResponse myResponse;
private PrintWriter out;
private BundleContext bc;

When passed
references, get the
basic and user
password
authentication
services

private BasicSchemeHandler basic;

UserPasswordService ups;
private boolean isAdmin = false;

public HomePortalServlet (BundleContext bc, ServiceReference anHTTPBasicReference,
ServiceReference anHTTPUsersReference) {

super();
this.bc = bc;

basic = (BasicSchemeHandler) bc.getService(anHTTPBasicReference);
ups = (UserPasswordService) bc.getService(anHTTPUsersReference);

}

Chapter 1 Using the HTTP Service 25

Implement a doGet
method

These four
methods are all
defined later

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

this.myRequest = request;
this.myResponse = response;
this.myResponse.setContentType("text/html");
this.out = new java.io.PrintWriter(response.getWriter());

htmlBegin();
this.displayServices();
displayChangePassword();
htmlEnd();

}

Start the HTML
output

void htmlBegin() {

this.out.println("<HTML><HEAD><TITLE>");
this.out.println(ls.welcomeHomePortal());
this.out.println("</TITLE></HEAD>");
this.out.println("<BODY BACKGROUND='/images/homeportal/backrnd_tile.gif'>");
this.out.println("
");

}

Get HttpAdmin
before you can get
an
HttpRegistration
object

private void displayServices() {

try {
HttpAdmin httpService = (HttpAdmin)this.bc.getService(

bc.getServiceReference("com.sun.jes.service.http.HttpAdmin"));

HttpRegistration[] regs = httpService.getServletRegistrations();

Move through the
servlets in the
array

Check for init
parameters that
make the servlet a
home portal

for (int i=0; i<regs.length; i++) {

Servlet servlet = regs[i].getServlet();

ServletConfig servletConfig = servlet.getServletConfig();

String presentationStr = servletConfig.getInitParameter(
 "com.sun.jes.service.homeportal.displayName");

String presentationImageAlias = servletConfig.getInitParameter(
 "com.sun.jes.service.homeportal.displayImageURL");

If the servlet has a
display name, get
its URL

if (presentationStr != null) {
URL aServletURL = regs[i].getURL("*");
26 JES 2.0 Developer Guide • 8/25/2000

If the servlet has
an image, display it

Use a null target to
ensure the same
browser

if (presentationImageAlias != null) { // present the icon too
this.out.println("");

}

this.printLink(aServletURL.getFile(), presentationStr,null);
this.out.print("

");

}

If the servlet has
an image, but no
text ...

Display the image
linked to the
servlet’s URL

else if (presentationImageAlias != null) {

URL aServletURL = regs[i].getURL("*");
this.out.println("<a href='");
this.out.println(aServletURL.getFile());
this.out.print("'>");
this.out.println("");
this.out.print("");

}
}

Check if the user is
an administrator

Then, display a link
to the JES
Management
Panel

printLink is defined
below

if(isAdmin == true) {

this.out.print("

");
this.out.print("<img src='/images/homeportal/sel.gif' WIDTH='20' HEIGHT='22'

ALIGN='BOTTOM' BORDER='0'>");
this.printLink("/admin", " JES Management Panel", null);
this.out.print("

");

}

} catch (Exception e) {
e.printStackTrace();

}

 }

Display the
Change Password
Web page

void displayChangePassword() {

this.out.print("

");
this.out.print("<img src='/images/homeportal/sel.gif' WIDTH='20' HEIGHT='22'

ALIGN='BOTTOM' BORDER='0'>");
this.printLink("/chgp", " Change Password", null);
this.out.print("

");

}

Chapter 1 Using the HTTP Service 27

Complete the
HTML output

void htmlEnd() {
this.out.println("</BODY></HTML>");
this.out.close();

}

Implement a
doPost method to
handle POST
requests

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws IOException, ServletException {

this.doGet (req, res);
}

Define printLink
here

protected void printLink(String location, String label, String target) {
this.out.print("<A HREF='");
this.out.print(location);

if (target != null) {
this.out.print("' TARGET='"+target);

}

this.out.print("'>");
this.out.print("");
this.out.print(label);
this.out.print("");
this.out.print("");

}

Implement the 3
HttpContext
methods

public URL getResource(String str) {
return null;

 }

 public String getMimeType(String str) {
return null;

 }

Implement basic
authentication

public boolean handleSecurity(HttpServletRequest req, HttpServletResponse res) {

BasicSchemeHandler.Response response = basic.getResponse(req);
if (response != null) {

Get the user name
and password from
the request
headers

String user = response.getName();
String password = response.getPassword();
28 JES 2.0 Developer Guide • 8/25/2000

check is defined
below

if (check(user, password)) {
if (ups.isAdmin(user))

isAdmin = true;
return true;

}
}

Returning false
causes the
browser to display
the login dialog box

try {
basic.sendChallenge(res, "homeportal");

}
catch(IOException ioe) {

ioe.printStackTrace();
}

return false;
 }

check is defined
here

boolean check(String user, String pass) {

boolean result = false;

try {
result = ups.checkPassword(user, pass);

}
catch(IllegalArgumentException iae) {

iae.printStackTrace();
 result = false;

}

return result;
 }
}

Chapter 1 Using the HTTP Service 29

30 JES 2.0 Developer Guide • 8/25/2000

	Using the HTTP Service
	Overview of the JES HTTP Service
	Registering Servlets and Resources
	What Registering Servlets Does
	What Registering Resources Does
	Handling Service Dependencies
	The httpRegister Method
	To Register Servlets and Resources
	Classes and Methods

	How To Write a Servlet

	Using Basic Authentication
	To Use Basic Authentication
	Classes and Methods

	Using the HttpAdmin Service
	To Use the HttpRegistration Object in a Servlet
	Classes and Methods

