»
2 Sun

microsystems

How to Write Your First JES Service

Java Embedded Server
\ersion 2.0

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

October 2000, Revision 03

Send comments about this document to: jes-comments@sun.com

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:
Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, Java, Java Embedded Server, and Solaris are trademarks, registered trademarks, or service
marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable a
Netscape Communicator™: Copyright 1995 Netscape Communications Corporation. Tous droits réserveés.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, Java, Java Embedded Server, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour larecherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L'ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

B 4}

Adobe PostScript

Contents

Preface v
Installing gnumake v

Installing nmake vi

Writing Your First JES Service 1
The JES Framework 2
The Simplest Bundle You Can Create 4
The BundleContext Object 4
The Bundle Life Cycle 5
Step 1: Write the Bundle Activator Class 6
Step 2: Create the Manifest File 7
Step 3: Create the Bundle JAR File 8
Step 4: Install and Run the Bundle 8
Adding an Interface and Service 10
Step 1: Write an Interface 10
Step 2: Write a Casual Implementation 11
Step 3: Write the Bundle Activator Class 12
The ServiceRegistration Object 13
Registering a Service in a Bundle Activator Class 13

Step 4: Write the Manifest File 15

Contents i

Step 5: Build and Run the Bundle 15
Writing a Formal Implementation 17
Step 1: Write the Implementation 17
Step 2: Write the Activator Class 18
Step 3: Write the Manifest File 19
Step 4: Build and Run greeting3 20
The Component Model 22
Using One Bundle from Another Bundle 23
The ServiceReference Object 24
Step 1: Write the Activator Class 24
Step 2: Write the Manifest File 26
Example: Building and Running the club Bundle 26

Contents v

Preface

Welcome to the Java Embedded Server™ technology, version 2.0. This tutorial is for
complete beginners who have never developed services or bundles for the Java
Embedded Server framework before.

Congratulations. You have made a good decision to read this tutorial and work
through the examples. When you finish this tutorial, you may enjoy reading the JES
Developer Guide for more in-depth and detailed information.

Before You Do the Examples

Before you can work through the examples in this tutorial, you must have a make
utility such as gnumake or nmake installed. To check that you have a make utility,
move to the directory jes2.0/docs/tutorial/greetingl and type gnumake (on Solaris) or nmake
(on Windows).

If your computer creates a JAR file named greetingl.jar and stores it in jes2.0/docs/tutorial/
build/bundles, you have the appropriate make utility. If your system displays an error
message saying that it can’t find the command, you need to install gnumake or nmake.

Installing gnumake

To install a prebuilt version of gnumake on Solaris, follow these steps:

1. Go to the website http://www.sunfreeware.com.

2. Choose your version of Solaris in the upper right frame.

3. Choose the gnumake utility in the lower right frame, for example, make-3.78.1.

4. Click the link to the downloadable binary for make-3.78.1.

5. Enter a pathname in the file download box, but make sure the pathname ends
with a filename ending with the .gz suffix.

6. After the download is finished, unzip the file:

gunzip filename.gz
7. Log in as root:

su -l root
enter password

8. To install gnumake in /usr/local/, use this pkgadd command and answer the
questions it asks:

pkgadd -d filename
9. To install gnumake in /usr/local, use this pkgadd command:
pkgadd -a none -d filename

10. Enter a base directory name for installing the gnumake utility when pkgadd
prompts you:

Enter path to package base directory [?,q]

The gnumake utility will be stored in basedirectory/bin/make. The directories
basedirectory/doc/make and basedirectory/info contain documentation.

Installing nmake
To install and build nmake on Windows NT, follow these steps:

1. Go to the FTP site ftp:/fitp.microsoft.com/Softlib/MSLFILES/nmake15.exe.
2. In the save As ... dialog box, save nmakel5.exe in a folder of your choice.
3. Open that folder and double-click nmake15.exe to install it.

The files it unpacks are nmake.exe, nmake.err, and Readme.txt.

vi JES 2.0 Tutorial « 25 October 2000 ¢ Solaris

CHAPTER 1

Writing Your First JES Service

So you want to write a service and create a bundle for the Java Embedded Server™
(JES) home gateway. This tutorial, complete with code examples, teaches you how to
write your first simple services, build them into bundles, and run them on the JES
framework.

This chapter continues an illustrious computer science tradition by presenting the
Hello, World of services and bundles—although we say Hello, World with several
different variations. Use the examples here with the JES framework—compile them,
install them, and run them. Then, modify them and rerun them to see the new
results.

2

The JES Framework

Before you begin, you need to understand the foundation of the Java Embedded
Server, the JES framework. The JES framework is written entirely in Java™ and so
must run on a Java virtual machine.

Java Embedded Server is a set of core services, such as LogService and HttpService,
running on top of the framework. You can develop any service you need (for
example, a FaxService and a VendingMachineService), and they can work with the
existing JES core services.

Looking at FIGURE 1-1, you can see that the JES framework is the hosting platform on
which services are run. A service is a group of Java classes and interfaces that
implement a certain feature. For example, the core HTTP service that is shipped with
JES creates a tiny Web server that can respond to requests from HTTP clients. A
vending machine service, on the other hand, might examine the machine’s internal
temperature, set prices for merchandise, and dispense soda cans.

While you are developing services, you run the JES framework on your develop-
ment platform. Later, you deploy your services on the JES framework inside a home
gateway server.

Once you write your service, you package it into a bundle before deploying it on the
framework. A bundle is a JAR file containing the service and any other files, images,
or resources it might need. A bundle can also contain several services that work
together as an integrated unit. Like any other JAR file, a bundle contains a Manifest
object (based on the java.util.jar.Manifest class) that describes the contents of the JAR file.

JES 2.0 Tutorial * 25 October 2000 ¢ Solaris

FIGURE 1-1 A Look into the JES Architecture

— — — — — Java Embedded Server - — — — o
| |
Q
2
>
o
()
g 8 g g g 8 ®
S S b S > S [}
3 5 g 3 g & £
b 2 @ ” o o S
o o £ o []
E S £ S S 3 >
T
N < © g
°
3
>
Framework

Java Virtual Machine

Operating System

The JES framework manages the services it hosts. Specifically, it registers services,
handles the bundle life cycle, tracks dependencies among services, and sends event
notifications. In order to manage bundles and services, the JES framework creates a
BundleContext object, which allows the framework and the bundle to interact. We’ll
talk about the BundleContext object in just a moment, when we can see it in some
actual code.

The JES framework complies with and extends the OSGi Service Gateway 1.0
Framework Specification developed by the Open Services Gateway Initiative. If you
haven’t already, you can get a copy of the OSGi specification, including its Javadoc
API reference, from http://www.osgi.org. You'll see references to the specification
throughout this tutorial.

Writing Your First JES Service 3

4

The Simplest Bundle You Can Create

Every bundle needs at least a bundle activator class and a manifest file. A bundle
activator class is a Java class that implements org.osgi.framework.BundleActivator and
defines logic for the start and stop methods. The JES framework uses start and stop to
start and stop the bundle.

In this example, we create a simple bundle that does not have any services, but
simply displays Hello when started and Bye when stopped. You’ll follow these steps:

1. Write a bundle activator class in Java.

2. Create a Manifest file as a text file.

3. Build a JAR file that contains the compiled activator class and the Manifest file.
4. Start the JES framework, and install, run, and stop the bundle.

Later, to create more complex bundles, you will write services that handle frame-
work events and use the core JES services or you will add functionality to the bundle
activator class.

The BundleContext Object

Now it’s time to talk about the BundleContext object, which allows a bundle to interact
with the JES framework.

The framework creates a BundleContext object when it starts a bundle and passes the
object to the bundle activator’s start method. The methods in the BundleContext object
allow the bundle to install itself, register services, get information about other
installed bundles, retrieve references to services, get and release service objects, get
and release Bundle and File objects, and subscribe to events published by the
framework. The BundleContext object is described in more detail later in this guide.
For now, you need to know these facts about the BundieContext object:

= Only the JES framework, never bundles, can create it.

= It’s passed to the start method when the bundle is activated.

= It’s also passed to the stop method when the bundle is stopped.

Let’s now look at how the bundle activator class is written.

JES 2.0 Tutorial * 25 October 2000 ¢ Solaris

The Bundle Life Cycle

A bundle has a life cycle, during which it can be installed, activated, updated,
deactivated, and uninstalled. It’s time that we examine this chain of events at a high
level (if you’re interested in more detail, you can look up the OSGi Service Gateway
Specification, Release 1.0).

The steps of the life cycle run like this:

1. The bundle is installed.

The JES framework reads the contents of the bundle, assigns it a bundle ID, and
caches its location and state persistently. A dedicated class loader is created to
access the bundle’s resources.

2. The bundle is activated.

The framework checks whether the Java classes the bundle requires have been
exported by other bundles. If so, the framework calls the start method in the
bundle’s activator class and registers the bundle’s services. At this point, the
bundle’s services start running.

The JES framework also resolves dependencies among bundles at this step,
ensuring that bundle A is present before it starts bundle B, if B depends on A.

3. The bundle is deactivated.

The framework calls the bundle’s stop method, which unregisters the service. The
service stops running.

4. The bundle is uninstalled.
The bundle is removed from the computer.

If an error occurs during the bundle life cycle, the JES framework throws a
BundleException, which is a special type of exception that occurs only during the
bundle life cycle. BundleException is a standard exception defined by the OSGi
specification (in org.osgi.framework) that JES implements.

Writing Your First JES Service

6

Step 1: Write the Bundle Activator Class

The greetingl bundle has a very simple bundle activator class, Activator.java, that only
defines start and stop methods.

org.osgi.framework

BundleActivator

BundleContext

BundleException

CODE EXAMPLE 1-1 A Simple Bundle Activator Class (greetingl/Activator.java)

package greetingl;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.BundleException;

public class Activator implements BundleActivator {

public void start(BundleContext context) throws BundleException {
System.out.println("Hello");

}

public void stop(BundleContext context) throws BundleException {
System.out.printin("Bye");
}

The Activator class is stored in the package named greeting1 L. It imports the
BundleActivator, BundleContext, and BundleException classes from org.osgi.framework
individually [, rather than importing the entire org.osgi.framework package, reducing
the amount of memory used when the JES framework loads the bundle activator.

Activator implements the BundleActivator interface [] and defines its start and stop
methods, as all bundle activator classes should. The start method [is implemented
to throw a BundleException, rather than a java.lang.Exception as the method is declared in

JES 2.0 Tutorial * 25 October 2000 ¢ Solaris

BundleActivator, because BundleException (a subclass of java.lang.Exception) is the exception
type the JES framework throws for a bundle life cycle problem. This implementation
of start displays Hello when the bundle is started.

The stop method [also throws a BundleException and displays Bye when the bundle is
stopped.

Step 2: Create the Manifest File

Every bundle that you install in the JES framework contains a Manifest file, a standard
text file that describes the contents of the JAR file. The Manifest file is structured in
headers, and each header has an attribute. For an example, look at the file greeting1/
Manifest.

BundleActivator: greetingl.Activator

This Manifest file has only one header. It tells the JES framework which Java class to
use as the bundle activator class.

The headers provide the JES framework with “hooks” to the files and resources the
bundle contains. This way, the framework knows where to find resources (such as
the bundle activator) within the bundle as the bundle moves through its life cycle.

The OSGi specification defines headers (shown in TABLE 1-1) that can be used in the
Manifest file for a JES bundle. But TABLE 1-1 just shows the names of the headers. Each
header has a defined syntax that you must use to specify its attribute. You don’t
need the syntax details to complete this tutorial, but if you’re interested, you can get
them from the Java Embedded Server 2.0 Developer Guide.

TABLE 1-1 The Headers You Can Use in a Bundle Manifest File

Bundle-Activator Bundle-DocURL Bundle-Version
Bundle-ClassPath Bundle-Name Export-Package
Bundle-ContactAddress Bundle-NativeCode Export-Service
Bundle-Description Bundle-UpdateLocation Import-Package
Bundle-Vendor Import-Service

Writing Your First JES Service 7

8

Step 3: Create the Bundle JAR File

Now that you have a bundle activator class and a Manifest file, you are ready to create
a bundle. You create the bundle using a makefile written in gnumake as shown below.

1. Move to the greetingl directory:

% cd jes2.0/docs/tutorial/greetingl

2. Build the JAR file:

% gnumake

3. Check for the JAR file:

% cd ../build/bundles
% Is greetingl.jar

Step 4: Install and Run the Bundle

1. Open a terminal window and move to your JES 2.0 directory:

% cd
% cd jes2.0

2. Start the JES framework:
% runjes

When the JES framework starts, you’ll see its command prompt:

Java Embedded Server 2.0
Copyright 1998, 1999 and 2000 Sun Microsystems, Inc.
All rights reserved. Use is subject to license terms.

Type ‘h[elp] for a list of commands.
>

3. With a Web browser, open the JES Tools Portal at jes2.0/index.html.
4. In the Tools Portal, click Management Panel to open the JES Management Panel.
5. In the JES Management Panel, click the Bundles tab.

6. In Bundle File to Install, browse to the greetingl bundle (it’s at jes2.0/docs/tutorial/build/
bundles/greetingl.jar), then click Install.

JES 2.0 Tutorial * 25 October 2000 ¢ Solaris

7. When you see greetingl listed in the right pane, click Start.

FIGURE 1-2 The JES Management Panel with greetingl Installed

[i v i
b [e rl-lu=-. e R L]
o e (o b Mk Moy oy el e o Haras H o it (T o o e ey il sl
HE T A
[Lecmiss @0 g e L0 o 1 e S e e
DR GH [epandnnche
1 Fryiiried Srvsiem
[T EXATE ey i
[[SERTTEET
WL & Busn b3 bl i
Fapaied Friage
r — fh
Imperind Fecimger
Lo
[et popdi Armam peoegl S
I Bywene. . |
|
| (L |
o lewlee — ~ Tk % o ED b

Writing Your First JES Service 9

Adding an Interface and Service

Services are designed to be written with interface and implementation separated.
When interface and implementation are separated, the interface is exposed to
outside callers, such as the JES framework or other services. This means that the
methods that are available, their arguments, return values, and exceptions are
clearly documented. The interface acts as a contract between the callers and the
service.

The implementation of the interface, on the other hand, is private to the service. You
have complete flexibility in how to code your service, provided that it meets the
specification the interface provides. You can create more than one implementation
for the same interface.

Separating interface and implementation makes you think harder during the design
stage. The service interface must have the minimum number of methods, no more,
no less. Because the interface decides how services are coupled together, once it is
defined, it should remain unchanged. It would be very costly to change a service
interface when many other services have come to rely on it. This is one of the major
challenges you face in developing for the JES framework.

Step 1. Write an Interface

When you write a service for the JES framework, you can implement an interface
that is provided by the JES or OSGi APIs. You can also write your own interface, as
shown in CODE EXAMPLE 1-2.

10 JES 2.0 Tutorial « 25 October 2000 ¢ Solaris

CODE EXAMPLE 1-2 The GreetingService Interface (greeting2/service/GreetingService.java)

package greeting2.service;

public interface GreetingService {

/**

* Prints a form of greeting to the stdout for the named
* individual.

* @param firstName First name of the person

* @param lastName Last name of the person

* @param title Title of the person, e.g., Mr./Ms./Sir

*/

public void greet(String firstName, String lastName, String title);

The interface in CODE EXAMPLE 1-2 is named GreetingService 1. It belongs to the
greeting2.service package [and is placed in the docsftutorial/greeting2/service directory.
The greet method [is declared to return a greeting that you define when you
implement it. It requires three parameters: the individual’s first name, last name,
and title.

In this example, greet is documented with Javadoc comments [1. It’s a good idea to
add Javadoc comments to any interface you write, so that a fellow developer
implementing it knows exactly what values the method accepts and returns.

Step 2: Write a Casual Implementation

As you know, cultural and social circumstances usually dictate how people greet
each other. Here we write an implementation of GreetingService for a casual setting.

Writing Your First JES Service 11

CODE EXAMPLE 1-3 Implementing GreetingService (greeting2/impl/CasualGreetingimpl.java)

package greeting2.impl;

import greeting2.service.GreetingService;

class CasualGreetinglmpl implements GreetingService {

public void greet(String firstName, String lastName, String title) {
System.out.println ("Hey, I'm Scott. Nice to meet you, " + firstName);

o 0O O 0O

}

Notice that the implementation class is stored in a different package and directory
than the interface classes. In CODE EXAMPLE 1-3, the implementation class is placed in
the package greeting2.impl L] and the directory jes2.0/docs/tutorial/greeting2/impl. This is so
that you can expose the interface classes (in greeting2.service) to other bundles without
exposing the implementation.

After defining the package, the next steps are to import the GreetingService interface [
and declare the class []. Notice that the implementation class has default package
access, while the GreetingService interface has public access. This means that other
bundles can call the interface, but not the implementation.

The next step is to implement the greet method LI to display a casual greeting. Notice
that the declaration of greet matches its method signature in the interface.

Step 3: Write the Bundle Activator Class

You now need to write a bundle activator class. The bundle activator class is
essential to any bundle, but in this bundle it must register our new service,
CasualGreetinglmpl, as well as start and stop the bundle. The bundle activator class
uses two objects the JES framework creates—the BundleContext object that you are
already familiar with and a ServiceRegistration object.

12 JES 2.0 Tutorial « 25 October 2000 » Solaris

The ServiceRegistration Object

In your bundle activator class, you will register services using the registerService
method that the BundleContext object defines. If the service registration is successful,
the framework returns a unique ServiceRegistration object to the bundle. The
ServiceRegistration object is always unique, even if the bundle registers the same
service more than once.

The ServiceRegistration object lets other bundles get a reference to the service or update
a service’s properties (which you set with registerService when you register the
service). You must use the ServiceRegistration object to unregister, so only the bundle
that holds the ServiceRegistration object can unregister the service.

Registering a Service in a Bundle Activator Class

Now it’s time to see how to use the BundleContext and ServiceRegistration objects in a
bundle activator class.

org.osgi.framework

—(BundleActivator)
—(ServiceRegistration)
—(BundleContext)

—| BundleException |

CODE EXAMPLE 1-4 The Activator Class for greeting2 (greeting2/impl/Activator.java)

package greeting2.impl;

import java.util.Properties;
import org.osgi.framework.*;
import greeting2.service.GreetingService;

Writing Your First JES Service 13

] public class Activator implements BundleActivator {

O private ServiceRegistration reg = null;

public void start(BundleContext ctxt) throws BundleException {
GreetingService greetingSvc = new CasualGreetingimpl();

Properties props = new Properties();
props.put("description”, "casual");

reg = ctxt.registerService("greeting2.service.GreetingService", greetingSvc, props);

O o 0O d

}

public void stop(BundleContext ctxt) throws BundleException {
0 if (reg != null)
reg.unregister();

The bundle activator class is stored in greeting2.impl, the same package as the
implementation classes []. You need to import java.util.Properties [, because you will
create a Properties object in order to register the service. You also need to import the
GreetingService interface [, because you will register your service under its interface
name. Then, unlike the implementation classes, the BundleActivator class is declared
public, so that the JES framework can call it L.

Next, you should prepare to register the service by creating a reference to a
ServiceRegistration object [, in this case named reg. Once the service is registered, the
framework will return a ServiceRegistration object that you can store in that object
reference variable.

Now it’s time to implement the start method and register the service [1. Notice that
the framework passes a BundleContext object to the start method. Registering the
service takes a number of steps:

« Create an instance of your service and cast it to its interface type [, because you
will register the service under its interface name.

« Create a Properties object and give the Properties object a key and a value [.

= Register the service [, using the fully qualified name for the interface
GreetingService, the instance of the service you just created, and the Properties object
you just created.

= Store the ServiceRegistration object the JES framework returns in reg, the object
reference created in [].

14 JES 2.0 Tutorial « 25 October 2000 » Solaris

You must also implement the stop method [, checking for a valid ServiceRegistration

object, then using the ServiceRegistration object to unregister the service with the
unregister method.

Step 4: Write the Manifest File

Let’s say that in designing your bundle, you decide to offer its services for other

bundles to use. To do this, you need to add the Export-Package header to the Manifest
file (remember that the headers are listed in TABLE 1-1). Export-Package hames the Java

packages that the bundle offers to share with other bundles.

The advantage of storing implementation classes and interfaces in separate Java
packages now becomes clear. When you export only the package that contains the
interfaces, other bundles do not have access to the service’s implementation.

Because a bundle always contains a bundle activator class, the Manifest file must also

have a Bundle-Activator header.

CODE EXAMPLE 1-5 The Manifest File for greeting2 (greeting2/Manifest)

] Bundle-Activator: greeting2.impl.Activator

Export-Package: greeting2.service

You can see in CODE EXAMPLE 1-5 that the Bundle-Activator header [1 names your
bundle activator using its full package name.

The Export-Package header [names the interface package as the one to export and
make available to other bundles. Now other bundles can call the GreetingService
interface without seeing details of the implementation.

Step 5: Build and Run the Bundle

1. Move to the right tutorial directory:

% cd
% cd jes2.0/docs/tutorial/greeting2

2. Build the JAR file:

% gnumake

Writing Your First JES Service

15

The build command generates the JAR file jes2.0/docs/tutorial/build/bundles/greeting?2.jar.

3. Start the JES framework:

% cd
% cd jes2.0
% runjes

4. In the framework window, install the bundle you just generated:

> install file:/jes2.0/docs/tutorial/build/bundles/greeting?2.jar

5. Get the bundle ID for the bundle you have just installed, and start the bundle
as in the previous example:

> bundles
> start bundlelD

When you start the greeting2 bundle, no messages appear.

6. Examine the registered services.

> services

[greeting2.service.GreetingService]
description=casual

The property description=casual was set with the Properties.put method in
CODE EXAMPLE 1-4.

7. Examine the exported packages.
> exportedpackages

Package: greeting2.service (0.0.0)
Exported by: 10 (file:/jes2.0/docs/tutorial/build/bundles/greeting2.jar)

This shows you that the Java package greeting2.service, version 0.0.0, has been
exported from the bundle greeting2.

8. Stop the bundle:

> bundles
> stop bundlelD

16 JES 2.0 Tutorial « 25 October 2000 » Solaris

Writing a Formal Implementation

In a formal setting, we would want to write a different implementation of
GreetingService that gives a more formal greeting. The formal implementation is easy
to write. It’s similar to CasualGreetinglmpl.java, except that the implementation of the
greet method is different.

Step 1. Write the Implementation

Notice that this class, FormalGreetinglmpl, implements GreetingService but belongs to a
different package.

CODE EXAMPLE 1-6 A More Formal Greeting (greeting3/impl/FormalGreetingimpl.java)

package greeting3.impl;

import greeting2.service.GreetingService;
public class FormalGreetinglmpl implements GreetingService {

public void greet(String firstName, String lastName, String title) {
System.out.println(
"My name is Scott McNealy. How do you do, " + title + " " + lastName + "? "
+ "It's a pleasure to make your acquaintance.");

Just as CasualGreetinglmpl.java did, FormalGreetinglmpl.java belongs to a package of
implementation classes [] that is separate from the interface classes [1.
FormalGreetinglmpl.java also imports and implements the GreetingService interface [1. The
greet method is implemented as before, but this time it displays a more formal
greeting L.

Writing Your First JES Service 17

Step 2: Write the Activator Class

The new implementation must also have a new bundle activator class that is similar
to the one shown in CODE EXAMPLE 1-4 but that registers our new service,
FormalGreetinglmpl.

org.osgi.framework

—C BundleActivator)
—(ServiceRegistration)
—(BundleContext)

—| BundleException |

CODE EXAMPLE 1-7 Registering FormalGreetinglmpl (greeting3/impl/Activator.java)

] package greeting3.impl;

import java.util.Properties;

import org.osgi.framework.*;

O import greeting2.service.*;

public class Activator implements BundleActivator {

private ServiceRegistration reg = null;

public void start(BundleContext ctxt) throws BundleException {

0 GreetingService greetingSvc = new FormalGreetingimpl();
B Properties props = new Properties();
props.put("description”, "formal");
O reg = ctxt.registerService("greeting2.service.GreetingService", greetingSvc, props);

}

public void stop(BundleContext ctxt) throws BundleException {
O if (reg != null)
reg.unregister();

18 JES 2.0 Tutorial « 25 October 2000 » Solaris

Just as with greeting2, the Activator class is stored in the implementation package [].
The class imports the greeting2.service package [, because that is the package that
contains the GreetingService interface.

The start method creates an instance of the new service, FormalGreetingimpl L1, casting it
to its interface type, GreetingService. The method then creates a new Properties object [,
giving it a key and value (description and formal, which you can check from the JES
framework later). The new service is then registered under the interface name
GreetingService [, storing the ServiceRegistration object the framework returns in the
object named reg.

The Activator class implements the stop method [as well, using reg to call the unregister
method.

Step 3: Write the Manifest File

Now let’s look at the Manifest file this bundle needs.

CODE EXAMPLE 1-8 The Manifest File for greeting3 (greeting3/Manifest)

Bundle-Activator: greeting3.impl.Activator

Export-Package: greeting2.service

Notice that the greeting3 bundle exports the package greeting2.service, which includes
GreetingService.java. The makefiles included in the examples (GNUmakefile for Solaris
and makefile for Windows NT) package the same GreetingService interface in both the
greeting2.jar and greeting3.jar bundles.

Since both bundles contain the package, they both export it. So if another bundle
wants to share greeting2.service, does it share with bundle greeting2 or bundle greeting3?
The JES framework is designed so that the bundle that is started first will export the
package.

The best way to check which bundle has exported a package is with the
exportedpackages command from the JES framework command line. For example, if
you have both greeting2 and greeting3 registered, you might see this output:

Writing Your First JES Service 19

> exportedpackages

Package: greeting2.service (0.0.0)
Exported by: 10 (file:/.../greeting3.jar)
Imported by: 11 (file:/.../greeting2.jar)

This output shows that greeting3 was registered first, exporting greeting2.service. The
greeting2 bundle was registered later. It also exports greeting2.service, but its export is
not available to other bundles, so the JES framework shows you that it imports the
service.

Step 4: Build and Run greeting3

You must compile greeting2 before greeting3, because the FormalGreetingimpl class in
greeting3 requires the GreetingService interface in greeting2. This logic is already coded
into the makefiles that are included with the tutorial examples.

Here’s what you do:

1.

20 JES 2.0 Tutorial

Move to the greeting3 example directory:

% cd
% cd jes2.0/docs/tutorial/greeting3

. Build the JAR file:

% gnumake
The build command generates the JAR file jes2.0/docs/tutorial/build/bundles/greeting3.jar.

Start the JES framework:

% cd
% cd jes2.0
% runjes

In the JES framework window, start the services needed for the JES
Management Panel:

> start log, servlet, http, tcatjspcruntime, httpauth, httpusers, jesmp

. From a Web browser, open the JES Tools Portal at jes2.0/index.html.

In the Tools Portal, click Management Panel to open the JES Management Panel.

In the login dialog box, enter admin for the user name and admin for the
password, then click OK.

Next to Bundle File to Install, click Browse, locate the greeting3 bundle you just
built at jes2.0/docs/tutorial/build/bundles/greeting3.jar, then click Install.

» 25 October 2000 * Solaris

9. In the right pane, click Start.

The right pane shows the full pathname to the bundle, any services it depends on,
and the name of its bundle activator class. Note that the Exported Packages
feature is not available in this release of JES MP.

10. Click the Services tab and examine both of the registered GreetingService
instances and their descriptions.

One GreetingService has the property description casual and one has description formal .

11. Click the View Log tab and notice what the framework has done with greeting3.
jar.

FIGURE 1-3 Installing the greeting3 Bundle Using JES MP

Yo R M G L LLET oyl Dl ool PG bt gt 8 e
R LR IR R L F e T LB Tuw i
[P TTE1Y
[T Lecwdan i+ T @] Faerin s walde sl e dis v grier g ju
=) Npprraneriey:
[T=F LT THF L] F= (e Bl S
el EEsratEds G
1414 L] Lhied S ros

L
UEL ol Foarai ke b lwadal | i [', -
T | lrpurnd ko

P

Hasdore Fharslle Bathvakin qecl ¥ =gl dlicdm

Aavdis Fisrs baral:
| Flaimrne . |
i |

- [i il GH

Writing Your First JES Service 21

22

The Component Model

The Java Embedded Server architecture uses a component programming model,
rather than the traditional library or toolkit model. Writing JES services is not simple
object-oriented programming, because JES services and bundles have a richer
semantics than classes written in the Java programming language.

FIGURE 1-4 A Typical Library-Based Architecture

Application

Network

Properties Admin GUI

Generic Data Structures

Java Virtual Machine

FIGURE 1-5 The JES Architecture (repeated)

- — — — — JavaEmbedded Server - — — — o
I I
[}
L
2
[0} [}
8 8 S 8 8 8 »
2 > 2 2 = S o
) E] o [E =
0 2 @ 0 b 0 S
& o % o (I x g
=] o o (]
| — ko] (@) L
T g © g
=]
g
>
Framework

Java Virtual Machine

Operating System

JES 2.0 Tutorial « 25 October 2000 Solaris

Compare FIGURE 1-4, a software library architecture, with FIGURE 1-5, the JES
architecture. You can see these differences:

In a library-based model, multiple layers of software abstractions stack up one on
top of another, while in a component-based model, multiple software components
plug in side by side.

In a library-based model, the sum of all libraries must be packaged together for
the product to work, while in a component-based model, a subset of components
can be packaged together and serve useful functionality as a product.

In a library-based model, you must rebuild and repackage the entire set of
libraries to fix bugs and add features during compile time, while in a component-
based model, new components can be added or existing components updated in
an incremental way during runtime.

In a library-based model, problems in lower layers can propagate up and affect
the stability of the entire software, while in a component-based model, the layers
are insulated from one another.

In a library-based model, changes made to public interfaces have less impact
because you have to rebuild the entire software package anyway, while in a
component-based model, the cost of rewriting a public interface can be
prohibitive, because another component may have relied upon it at runtime.

In a library-based model, it is easy to follow the flow of control because
applications usually have one entry point (for example, public static void main(String|]
args)), while in a component-based model, components are controlled by a
hosting environment and interact with each other dynamically.

In conclusion, the component-based model requires more discipline on the part of
developers during the design stage, but provides more reliability, extensibility, and
flexibility over the library-based model during runtime.

Using One Bundle from Another Bundle

Because JES uses a component model in which components plug in to the
framework side by side, one bundle can use a second bundle’s services, provided the
second bundle exports them. One bundle’s service can be used by another more
elaborate service so that you get richer functionality.

Writing Your First JES Service 23

24

Suppose we have a bundle that enrolls new members in a club, maybe a chess club.
In the process we want to use the casual implementation of GreetingService to show
greetings to newcomers.

In this example, the club bundle depends upon the GreetingService. This example does
not show the services of the club bundle. It only shows the Activator class that obtains
the GreetingService by using a ServiceReference object.

The ServiceReference Object

A ServiceReference object is a reference to a service. If your bundle uses another
service, it must first get a ServiceReference object and then use the ServiceReference
object to get the service. Because you get the ServiceReference object first, you can
examine the properties of the service before you use it. A registered service can have
multiple, distinct ServiceReference objects referring to it. When a service has more than
one reference, the references are considered to be equal.

Step 1: Write the Activator Class

You get the ServiceReference object by writing an Activator class, using the
getServiceReference Or getServiceReferences methods from the BundleContext object. The
getServiceReference method returns one service reference, while getServiceReferences
returns an array of references that match certain criteria. Because the framework is a
dynamic environment with services constantly being registered, started, and
stopped, you may want to use getServiceReferences, as shown in CODE EXAMPLE 1-9.

org.osgi.framework

—(BundleActivator)
—(ServiceReference)
—(BundleContext)

—| BundleException |

—| InvalidSyntaxException |

JES 2.0 Tutorial « 25 October 2000 Solaris

O o o od

CODE EXAMPLE 1-9 Getting Service References in an Activator Class (club/Activator.java)

package club;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.BundleException;
import org.osgi.framework.ServiceReference;
import org.osgi.framework.InvalidSyntaxException;

import greeting2.service.GreetingService;

public class Activator implements BundleActivator {

public void start (BundleContext ctxt) throws BundleException {
try {

ServiceReference[] casualRefs = ctxt.getServiceReferences(
"greeting2.service.GreetingService", "(description=casual)");

GreetingService greetingSvc = (GreetingService) ctxt.getService(casualRefs[0]);

greetingSvc.greet ("Bill", "Gates", "Chairman");

} catch (InvalidSyntaxException e) {
throw new BundleException(“Invalid LDAP filter", e);
}
}

public void stop(BundleContext ctxt) throws BundleException {

}

When the club bundle is started, it gets the references to all instances of the casual
greeting service, CasualGreetinglmpl, that are running on the JES framework [1. The club
bundle does this by using the getServiceReferences method with two parameters—the
fully qualified name of the GreetingService interface, and an LDAP filter that specifies
the properties used when CasualGreetinglmpl was registered.

The method needs to use the LDAP filter, because we know that the JES framework
has two services registered under the GreetingService interface. In this example, the
LDAP filter parameter looks like "(description=casual)" [1. The filter parameter to
getServiceReferences has its own syntax rules that are described in the Javadoc API
documentation for the BundleContext interface.

Writing Your First JES Service 25

26

Once you have the array of ServiceReference objects, the bundle gets the casual
greeting service [by calling the getService method on the first element in the array
and casting the service object to GreetingService, the interface type the service is
registered with. Because GreetingService is registered with the framework and the club
bundle declares that it imports GreetingService in its Manifest file, the JES framework is
able to satisfy the request.

The start method then uses the service’s greet method [to display a casual greeting
to a well-known club member when the bundle is started. The Activator class needs to
handle syntax errors in the LDAP filter parameter, so the catch clause catches an
InvalidSyntaxException and throws it with the message Invalid LDAP filter (1.

Step 2: Write the Manifest File

Of course, this bundle also needs a Manifest file. The Manifest file needs to specify the
name of the bundle activator class and any packages that the bundle depends on, in
this case, greeting2.service.

CODE EXAMPLE 1-10 The Manifest File for club (club/Manifest)

Bundle-Activator: club.Activator

Import-Package: greeting2.service

The Import-Package header [in the Manifest file specifies the Java package the club
bundle requires. When the JES framework starts the bundle, the framework will
ensure that the greeting2 bundle has exported greeting2.service. The framework will
then activate the club bundle, using the specified Activator class [].

Example: Building and Running the club Bundle

1. Move to the correct tutorial directory:

% cd
% cd jes2.0/docs/tutorial/club

2. Build the JAR file:

% gnumake

The build command generates the JAR file jes2.0/docs/tutorial/build/bundles/club.jar.

JES 2.0 Tutorial « 25 October 2000 Solaris

3. Start the JES framework:

% cd
% cd jes2.0
% runjes

4. In the framework window, install the bundle you just generated:

> install file:/jes2.0/docs/tutorial/build/bundles/club.jar

5. Get the bundle ID for the bundle you have just installed, and start the bundle
as in earlier examples:

> bundles
> start bundlelD

You see the greeting:
Hey, I'm Scott. Nice to meet you, Bill
6. Examine the exported packages:
> exportedpackages
Package: greeting2.service (0.0.0)

Exported by: 10 (file:/home/sahmed/kmakebuild/product/docs/tutorial/build/bundles/greeting2.jar)
Imported by: 12 (file:’home/sahmed/kmakebuild/product/docs/tutorial/build/bundles/greeting3.jar)
13 (file:’lhome/sahmed/kmakebuild/product/docs/tutorial/build/bundles/club.jar)

This shows that greeting2.service has been exported by greeting2.jar and imported by
club.jar.

7. Stop the bundle:

> bundles
> stop bundlelD

Writing Your First JES Service 27

28 JES 2.0 Tutorial « 25 October 2000 » Solaris

	How to Write Your First JES Service
	Java Embedded Server™ Version 2.0
	Contents
	1. Writing Your First JES Service�1
	Preface

	Before You Do the Examples
	1. Go to the website http://www.sunfreeware.com.
	2. Choose your version of Solaris in the upper right frame.
	3. Choose the gnumake utility in the lower right frame, for example, make-3.78.1.
	4. Click the link to the downloadable binary for make-3.78.1.
	5. Enter a pathname in the file download box, but make sure the pathname ends with a filename end...
	6. After the download is finished, unzip the file:
	7. Log in as root:
	8. To install gnumake in /usr/local/, use this pkgadd command and answer the questions it asks:
	9. To install gnumake in /usr/local, use this pkgadd command:
	10. Enter a base directory name for installing the gnumake utility when pkgadd prompts you:
	1. Go to the FTP site ftp://ftp.microsoft.com/Softlib/MSLFILES/nmake15.exe.
	2. In the Save As ... dialog box, save nmake15.exe in a folder of your choice.
	3. Open that folder and double-click nmake15.exe to install it.
	1
	Writing Your First JES Service

	The JES Framework
	FIGURE�1�1 A Look into the JES Architecture
	The Simplest Bundle You Can Create
	1. Write a bundle activator class in Java.
	2. Create a Manifest file as a text file.
	3. Build a JAR file that contains the compiled activator class and the Manifest file.
	4. Start the JES framework, and install, run, and stop the bundle.
	The BundleContext Object
	The Bundle Life Cycle
	1. The bundle is installed.
	2. The bundle is activated.
	3. The bundle is deactivated.
	4. The bundle is uninstalled.

	Step 1: Write the Bundle Activator Class
	CODE�EXAMPLE�1�1 A Simple Bundle Activator Class (greeting1/Activator.java)

	Step 2: Create the Manifest File
	TABLE�1�1 The Headers You Can Use in a Bundle Manifest File

	Step 3: Create the Bundle JAR File
	1. Move to the greeting1 directory:
	2. Build the JAR file:
	3. Check for the JAR file:

	Step 4: Install and Run the Bundle
	1. Open a terminal window and move to your JES 2.0 directory:
	2. Start the JES framework:
	3. With a Web browser, open the JES Tools Portal at jes2.0/index.html.
	4. In the Tools Portal, click Management Panel to open the JES Management Panel.
	5. In the JES Management Panel, click the Bundles tab.
	6. In Bundle File to Install, browse to the greeting1 bundle (it’s at jes2.0/docs/tutorial/build/...
	7. When you see greeting1 listed in the right pane, click Start.
	FIGURE�1�2 The JES Management Panel with greeting1 Installed

	Adding an Interface and Service
	Step 1: Write an Interface
	CODE�EXAMPLE�1�2 The GreetingService Interface (greeting2/service/GreetingService.java)

	Step 2: Write a Casual Implementation
	CODE�EXAMPLE�1�3 Implementing GreetingService (greeting2/impl/CasualGreetingImpl.java)

	Step 3: Write the Bundle Activator Class
	The ServiceRegistration Object
	Registering a Service in a Bundle Activator Class
	CODE�EXAMPLE�1�4 The Activator Class for greeting2 (greeting2/impl/Activator.java)

	Step 4: Write the Manifest File
	CODE�EXAMPLE�1�5 The Manifest File for greeting2 (greeting2/Manifest)

	Step 5: Build and Run the Bundle
	1. Move to the right tutorial directory:
	2. Build the JAR file:
	3. Start the JES framework:
	4. In the framework window, install the bundle you just generated:
	5. Get the bundle ID for the bundle you have just installed, and start the bundle as in the previ...
	6. Examine the registered services.
	7. Examine the exported packages.
	8. Stop the bundle:

	Writing a Formal Implementation
	Step 1: Write the Implementation
	CODE�EXAMPLE�1�6 A More Formal Greeting (greeting3/impl/FormalGreetingImpl.java)

	Step 2: Write the Activator Class
	CODE�EXAMPLE�1�7 Registering FormalGreetingImpl (greeting3/impl/Activator.java)

	Step 3: Write the Manifest File
	CODE�EXAMPLE�1�8 The Manifest File for greeting3 (greeting3/Manifest)

	Step 4: Build and Run greeting3
	1. Move to the greeting3 example directory:
	2. Build the JAR file:
	3. Start the JES framework:
	4. In the JES framework window, start the services needed for the JES Management Panel:
	5. From a Web browser, open the JES Tools Portal at jes2.0/index.html.
	6. In the Tools Portal, click Management Panel to open the JES Management Panel.
	7. In the login dialog box, enter admin for the user name and admin for the password, then click OK.
	8. Next to Bundle File to Install, click Browse, locate the greeting3 bundle you just built at je...
	9. In the right pane, click Start.
	10. Click the Services tab and examine both of the registered GreetingService instances and their...
	11. Click the View Log tab and notice what the framework has done with greeting3. jar.
	FIGURE�1�3 Installing the greeting3 Bundle Using JES MP

	The Component Model
	FIGURE�1�4 A Typical Library-Based Architecture
	FIGURE�1�5 The JES Architecture (repeated)
	Using One Bundle from Another Bundle
	The ServiceReference Object
	Step 1: Write the Activator Class
	CODE�EXAMPLE�1�9 Getting Service References in an Activator Class (club/Activator.java)

	Step 2: Write the Manifest File
	CODE�EXAMPLE�1�10 The Manifest File for club (club/Manifest)

	Example: Building and Running the club Bundle
	1. Move to the correct tutorial directory:
	2. Build the JAR file:
	3. Start the JES framework:
	4. In the framework window, install the bundle you just generated:
	5. Get the bundle ID for the bundle you have just installed, and start the bundle as in earlier e...
	6. Examine the exported packages:
	7. Stop the bundle: > bundles > stop bundleID

