
CHAPTER 1

Using the Log Service
1

Overview of the JES Log Service

When you start the JES log service, it runs along with the JES framework, in the

background, waiting for event messages. The log service runs when you start the JES

framework and then enter a command like this one:

> start log , servlet, http, tcatjspcruntime, httpauth, httpusers, jesmp

An event message can come from any type of event, including a BundleEvent,

FrameworkEvent, or ServiceEvent, or from any bundle. The log resides in memory as long

as the JES framework is running and can hold up to 1,000,000 entries. However, the

log is not stored persistently and is destroyed when the framework is shut down.

Most of the log service API is contained in the package org.osgi.service.log, which has

four interfaces—LogEntry, LogListener, LogReaderService, and LogService.

You can think of the interfaces in the log service API this way:

■ LogEntry creates an entry to add to the log.

■ LogService puts the entry into the log.

■ LogListener creates a listener so that a bundle is notified when an entry is added to

the log.

■ LogReaderService adds and removes listeners and reads messages stored in the log.
2 JES 2.0 Developer Guide • 8/25/2000

If you were to draw the log service, it might look something like FIGURE 1-1.

FIGURE 1-1 The Interfaces in the Log Service API

The JES framework also has a configurable interface with features that add to the

OSGi specification; that is discussed later, in “Discovering the Configurable

Interface.”

Adding Entries to the Log

Each log entry is a a message that describes an event. A message always includes a

log level and a String, and can also include a Throwable exception, a ServiceReference

object, or both. You log messages using one of these forms of the log method:

LogService

public void log (int level, String message)
public void log (int level, String message, Throwable exception)
public void log (ServiceReference sr, int level, String message)
public void log (ServiceReference sr, int level, String message, Throwable exception)

Bundle
LogListener

Log

LogService

LogReaderService

contains entries of
type LogEntry

listens for entries

writes events to the log

reads events from the log
adds and removes listeners and
Chapter 1 Using the Log Service 3

Each entry contains a log level. The log levels are also in LogService and range from 1

to 4, with these descriptions:

In this list, the highest (or most severe) log level is 1 (LOG_ERROR), and the lowest (or

least severe) is 4 (LOG_DEBUG).

When you add a Throwable exception to a log entry, it’s usually to an entry of type 1,

LOG_ERROR. When you give an entry a ServiceReference object, the entry allows other

bundles to discover information about the bundle that logged the message.

In addition to the log level, log string, Throwable exception, and ServiceReference object

that you add, the log service also timestamps log entries. If all of this is sounding

like a very long String for one entry, you’re right. A log entry, which is a single String

object, can contain multiple lines.

▼ To Log Entries

1. Get the bundle context from the framework.

2. Get a reference to the log service, then the service itself.

3. Use the log method to put messages into the log.

CODE EXAMPLE 1-1 demonstrates how to add messages to the log.

Log Level Description Meaning

1 LOG_ERROR An error message indicating that the bundle or

service may not be functional. Highest level.

2 LOG_WARNING A warning message indicating that the bundle or

service is still functioning but may experience

problems in the future as a result of the warning

condition.

3 LOG_INFO An informational message added as a result of some

change in the bundle or service that does not indicate

a problem.

4 LOG_DEBUG A debugging message that is used to describe a

problem and may be meaningless to anyone but the

developer. Lowest level.
4 JES 2.0 Developer Guide • 8/25/2000

CODE EXAMPLE 1-1 Logging Messages (LogExample.java)

Import the
LogService
interface

package logexample;

import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;
import org.osgi.service.log.LogService;

Get the bundle
context from the
framework

Use the bundle
context to create
the log service
reference

log is defined in
getServices,
below

Check for a null in
case getServices
is called
repeatedly

public class LogExample {

LogExample(BundleContext bc) {
try {

getServices(bc);

if (log == null) {
System.err.println("Unable to get the Log service reference!");
return;

}

Generate some
fake log messages

log.log(LogService.LOG_ERROR, "Log error");
log.log(LogService.LOG_WARNING, "Log warning");
log.log(LogService.LOG_INFO, "Log info");
log.log(LogService.LOG_DEBUG, "Log msg");

Set log to null to
avoid memory
leaks

log = null;

} catch (Exception e) {
System.err.println(e.getMessage());

}

}

getServices is
defined here

public final static String LOG_CLASS = "org.osgi.service.log.LogService";
Chapter 1 Using the Log Service 5

Getting Information from a Log Entry

Because each entry in the log is a LogEntry object, you can use the LogEntry methods to

get information from the entry. You can extract the log level, log string, Throwable

exception, ServiceReference object, or timestamp that are part of the entry. You can also

retrieve the bundle that logged the message. The timestamp is returned in the

number of milliseconds since January 1, 1970, 00:00:00 GMT.

The methods you use to retrieve information from a LogEntry object are these:

LogEntry

public Bundle getBundle ()
public ServiceReference getServiceReference ()
public int getLevel ()
public String getMessage ()
public Throwable getException ()
public long getTime ()

But you may also want to read the entries that were already added to the log before

you created the listener. To do this, you enumerate through the entries and read

them.

A reference to the
log service object

private LogService log = null;

Synchronized to
prevent the log
service from being
uninstalled while
this bundle is
trying to get it

synchronized void getServices(BundleContext bc) {
ServiceReference sr = null;

Get the service
reference and the
log service

if (log == null) {
if ((sr = bc.getServiceReference(LOG_CLASS)) != null) {

log = (LogService) bc.getService(sr);
}

}
}

}

6 JES 2.0 Developer Guide • 8/25/2000

▼ To Enumerate and Read the Entries in the Log

1. Get references to the log and log reader services.

2. Get the services themselves.

3. Use the getLog method from the log reader service to get the entries in the log as
an enumeration.

4. Move through each entry in the enumeration.

5. Use the methods from LogEntry to read the entries.

CODE EXAMPLE 1-2 shows you how to enumerate through the log.
Chapter 1 Using the Log Service 7

CODE EXAMPLE 1-2 Enumerating Through the Log (LogEnumeration.java)

Import the log
classes

package logenumeration;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;

import org.osgi.service.log.LogEntry;
import org.osgi.service.log.LogService;
import org.osgi.service.log.LogReaderService;

import java.util.Date;
import java.util.Enumeration;

Get references to
the LogService
and
LogReaderService

Display a message
if a service is null

public class LogEnumeration {

private static final String API_PREFIX = "API Test ";

LogEnumeration(BundleContext bc) {
try {

getServices(bc);

if (log == null) {
System.err.println("Unable to get Log service reference!");

return;
}

if (logreader == null) {
System.err.println("Unable to get LogReader service reference!");
return;

}

Log entries with
just a level and a
message

// API test #1

System.out.println("public void log(int level, String msg)");

log.log(LogService.LOG_ERROR, API_PREFIX + "1: Log error");
log.log(LogService.LOG_WARNING, API_PREFIX + "1: Log warning");
log.log(LogService.LOG_INFO, API_PREFIX + "1: Log info");
log.log(LogService.LOG_DEBUG, API_PREFIX + "1: Log debug");
8 JES 2.0 Developer Guide • 8/25/2000

Log entries with a
level, message,
and Throwable
exception

// API test #2

 System.out.println("public void log(int level, String msg, Throwable e)");

 log.log(LogService.LOG_ERROR, API_PREFIX + "2: Log error",
new IllegalArgumentException("error"));

log.log(LogService.LOG_WARNING, API_PREFIX + "2: Log warning",
new IllegalArgumentException("warning"));

log.log(LogService.LOG_INFO, API_PREFIX + "2: Log info",
new IllegalArgumentException("info"));

log.log(LogService.LOG_DEBUG, API_PREFIX + "2: Log debug",
new IllegalArgumentException("debug"));

Log entries with a
level, message,
and service
reference object

// API test #3

System.out.println("public void log(ServiceReference sr, int level, String msg)");

log.log(sr, LogService.LOG_ERROR, API_PREFIX + "3: Log error");
log.log(sr, LogService.LOG_WARNING, API_PREFIX + "3: Log warning");
log.log(sr, LogService.LOG_INFO, API_PREFIX + "3: Log info");
log.log(sr, LogService.LOG_DEBUG, API_PREFIX + "3: Log debug");

Log entries with a
level, message,
service reference
object, and
Throwable
exception

// API test #4

System.out.println("public void log(ServiceReference sr, int level, String msg,
Throwable e)");

log.log(sr, LogService.LOG_ERROR, API_PREFIX + "4: Log error",
new IllegalArgumentException("error"));

log.log(sr, LogService.LOG_WARNING, API_PREFIX + "4: Log warning",
new IllegalArgumentException("warning"));

log.log(sr, LogService.LOG_INFO, API_PREFIX + "4: Log info",
new IllegalArgumentException("info"));

log.log(sr, LogService.LOG_DEBUG, API_PREFIX + "4: Log debug",
new IllegalArgumentException("debug"));

Enumerate
through the log and
show each entry’s
contents

System.out.println();

 for(Enumeration e = logreader.getLog(); e.hasMoreElements();) {
 showEntry ((LogEntry) e.nextElement());
 }

 } catch (Exception e) {
 System.err.println(e.getMessage());
 }

 }
Chapter 1 Using the Log Service 9

Reference to the
LogService object

Reference to the
LogReaderService
object

private final static String LOG_CLASS = "org.osgi.service.log.LogService";
private final static String LOG_READER_CLASS = "org.osgi.service.log.LogReaderService";

private LogService log = null;
private LogReaderService logreader = null;

ServiceReference sr = null;

synchronized void getServices(BundleContext bc) {
if (log == null) {

if ((sr = bc.getServiceReference(LOG_CLASS)) != null) {
log = (LogService) bc.getService(sr);

}

if ((sr = bc.getServiceReference(LOG_READER_CLASS)) != null) {
logreader = (LogReaderService) bc.getService(sr);

}
}

}

Show the contents
of a log entry

Returns true if
there’s an error in
the entry

private boolean showEntry(LogEntry entry) {

Bundle b = entry.getBundle();
int level = (int) entry.getLevel();
long time = entry.getTime();
String message = entry.getMessage();
ServiceReference sr = entry.getServiceReference();
Throwable e = entry.getException();

Show only those
entries that were
logged by this
bundle

if (message.startsWith(API_PREFIX) == true) {

Show the severity
level information

System.out.print(" Level " + level + ": ");
switch (level) {

case LogService.LOG_ERROR:
System.out.print("ERROR ");
break;
10 JES 2.0 Developer Guide • 8/25/2000

case LogService.LOG_WARNING:
System.out.print("WARNING");
break;

case LogService.LOG_INFO:
System.out.print("INFO ");
break;

case LogService.LOG_DEBUG:
System.out.print("DEBUG ");
break;

default:
System.out.print(" ??? ");
return true;

}

Show the time that
the message was
logged

System.out.println(" at " + new Date(time).toString());

Show the message
that was logged

System.out.println(" Message: " + message);

Show the service
reference
information and
any exception
messages

System.out.print("Service, Exception: " + sr);
if (e == null) {

System.out.println(", None.");
} else {

System.out.println(", '" + e.getMessage() + "'");
}

System.out.println();

} // if

return false;
 }

}

Chapter 1 Using the Log Service 11

Creating a Listener

To create a listener for your bundle, you implement both the LogListener and

LogReaderService interfaces. LogListener creates the listener that allows your bundle to

“hear” entries logged by the JES framework or by other bundles as soon as they

have been logged. LogReaderService allows you to add a listener, remove it, or read the

entries already in the log in the form of an Enumeration.

LogListener and LogReaderService include these methods:

LogListener

public void logged (LogEntry entry)

LogReaderService

public void addLogListener (LogListener listener)
public void removeLogListener (LogListener listener)
public Enumeration getLog ()

▼ To Create a Listener

1. Write a class that implements LogListener.

2. Use the bundle context to create a reference to the log and log reader services.

3. Use the references to get the services themselves.

4. Add the log listener to the bundle.

5. Make the bundle sleep briefly so that framework events can be heard first.

6. Log the messages.

7. Remove the log listener at the end of the class, so that it is removed when the
bundle shuts down.

CODE EXAMPLE 1-3 shows you how to create a log listener.
12 JES 2.0 Developer Guide • 8/25/2000

CODE EXAMPLE 1-3 Creating a Log Listener (LogListening.java)

Import the log
service classes

package loglistening;

import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;

import org.osgi.service.log.LogEntry;
import org.osgi.service.log.LogListener;
import org.osgi.service.log.LogService;
import org.osgi.service.log.LogReaderService;

Implement
LogListener

Use the bundle
context to create
the log service
reference

public class LogListening implements LogListener {

LogListening(BundleContext bc) {
try {

getServices(bc);

if (log == null) {
System.err.println("Unable to get Log service reference!");
return;

}
if (logreader == null) {

System.err.println("Unable to get LogReader service reference!");
return;

}

Set up a listener

Make the bundle
sleep briefly so
framework events
can be heard first

Create some
messages to be
logged

logreader.addLogListener(this);

Thread.sleep(10);

System.out.println("Using: public void log(int level, String msg)");
log.log(LogService.LOG_ERROR, "Sample LOG_ERROR");
log.log(LogService.LOG_WARNING, "Sample LOG_WARNING");
log.log(LogService.LOG_INFO, "Sample LOG_INFO");
log.log(LogService.LOG_DEBUG, "Sample LOG_DEBUG");

Remove the
listener so we can’t
detect messages
any more

Messages that
follow should not
be logged

logreader.removeLogListener(this);

log.log(LogService.LOG_ERROR, "ERROR: You shouldn’t see this");
Chapter 1 Using the Log Service 13

Remove the log
listener when the
bundle shuts down

 if (log == null) {
 if ((sr = bc.getServiceReference(LOG_CLASS)) != null) {
 log = (LogService) bc.getService(sr);
 }
 if ((sr = bc.getServiceReference(LOG_READER_CLASS)) != null) {
 logreader = (LogReaderService) bc.getService(sr);
 }
 }
 }

Reference to the
LogService object

Reference to
LogReaderService

Here’s getServices

private final static String LOG_CLASS = "org.osgi.service.log.LogService";
private final static String LOG_READER_CLASS = "org.osgi.service.log.LogReaderService";

 private LogService log = null;

 private LogReaderService logreader = null;

 synchronized void getServices(BundleContext bc) {
 ServiceReference sr = null;

Implement the
logged method
from LogListener

Gets messages as
they are logged
and displays them

 public void logged(LogEntry entry) {
 try {
 System.out.println(entry.getMessage());
 } catch (Exception e) {
 System.err.println(e.getMessage());
 return;
 }
 }

}

14 JES 2.0 Developer Guide • 8/25/2000

Discovering the Configurable Interface

The JES log service includes methods you can use to configure the size and severity

threshold of the log. Please note that these methods are not made publicly available

in the JES API. You must discover them by using reflection with a configuration

object (an object that implements org.osgi.framework.Configurable).

The methods that you use to configure the log are listed below:

public int getLogSize ()
public synchronized setLogSize (int size)
public int getSeverityThreshold ()
public void setSeverityThreshold (int threshold)

When you use reflection to discover these methods, the output of the reflection looks

like this:

Method: getLogSize
Current Log size = 20 LogEntry elements.

Method: setLogSize
Size should be set to 50

Method: getLogSize
New Log size = 50 LogEntry elements.

Method: getSeverityThreshold
Current severity threshold = 4

Method: setSeverityThreshold
Severity threshold should be set to 2

Method: getSeverityThreshold
New severity threshold = 2

When you configure the log’s size, remember that its minimum size of is 1, its

maximum size is 1,000,000, and its default size is 20. If you set the size of the log less

than the current size, only the most recently logged messages are kept. If you make

the size of the log greater than the current size, the log service creates a new log,

copies all previous messages to it, and adds space for the additional entries.
Chapter 1 Using the Log Service 15

The severity threshold is the log level at or below which entries are added to the log.

For example, if you set the severity level to 4, entries with a log level of 4 or lower

(that is, all entries) are added to the log. The severity threshold can be between 1 and

4, unless you extend the LogService interface to add more levels.

When you set the severity threshold to a new value, future log entries are only

placed in the log if their levels are at or below the severity threshold level. When the

threshold level is 4 (LOG_DEBUG, the default), entries of all levels are added to the

log.

The log size and severity threshold are stored in a properties file on the embedded

server’s filesystem (if one exists) after the JES framework is shut down.

You can find an example of how to use reflection to discover the configurable

interface in your jes2.0/docs/examples/LogReflect.

Using the Log Properties

You can also set the log size and severity threshold when you start the JES

framework. Start JES 2.0 from the command line, using a java command with the

-D option, followed by a property name and value, for example:

java -Dcom.sun.jes.service.log.size=200000 -jar framework.jar

The properties that affect the log service and their values are listed below:

com.sun.jes.service.log.size Minimum 1, maximum 1000000, default 20

com.sun.jes.service.log.threshold 1, 2, 3, or 4; default 4
16 JES 2.0 Developer Guide • 8/25/2000

	Using the Log Service
	Overview of the JES Log Service
	Adding Entries to the Log
	To Log Entries
	Getting Information from a Log Entry
	To Enumerate and Read the Entries in the Log
	Creating a Listener
	To Create a Listener
	Discovering the Configurable Interface
	Using the Log Properties

