
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Send comments about this document to: docfeedback@sun.com

Java Embedded Server 2.0
Tutorial™

Part No. 8xx-xxxx-xx
August 2000, Revision 01

Please

Recycle

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:

Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, and Solaris [ATTRIBUTION OF ALL OTHER SUN TRADEMARKS MENTIONED

SIGNIFICANTLY THROUGHOUT PRODUCT OR DOCUMENTATION. DO NOT LEAVE THIS TEXT IN YOUR DOCUMENT!] are

trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used

under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing

SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. [THIRD-PARTY TRADEMARKS THAT REQUIRE

ATTRIBUTION APPEAR IN ‘TMARK.’ IF YOU BELIEVE A THIRD-PARTY MARK NOT APPEARING IN ‘TMARK’ SHOULD BE

ATTRIBUTED, CONSULT YOUR EDITOR OR THE SUN TRADEMARK GROUP FOR GUIDANCE.]

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à

Netscape Communicator™: Copyright 1995 Netscape Communications Corporation. Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, et Solaris [ATTRIBUTION OF ALL OTHER SUN TRADEMARKS MENTIONED

SIGNIFICANTLY THROUGHOUT PRODUCT OR DOCUMENTATION. DO NOT LEAVE THIS TEXT IN YOUR DOCUMENT!] sont des

marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes

les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-

Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

[THIRD-PARTY TRADEMARKS THAT REQUIRE ATTRIBUTION APPEAR IN ‘TMARK.’ IF YOU BELIEVE A THIRD-PARTY MARK NOT

APPEARING IN ‘TMARK’ SHOULD BE ATTRIBUTED, CONSULT YOUR EDITOR OR THE SUN TRADEMARK GROUP FOR GUIDANCE.]

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Contents

Preface vii

 1

1. Java Embedded Server Tutorial 1

Concepts 1

The Service Gateway Framework 1

Services 2

Bundles 2

Bundle Contexts 2

ServiceRegistrations and ServiceReferences 2

OSGi Service Gateway Architecture 3

Manifest 4

Bundle Activator 4

Import-Package and Export-Package 4

A Tour Behind the Scenes 5

The Component-Based Programming Model 6

Separation of Interface and Implementation 7

Creating Services for the JES 8

Steps to Develop a Bundle 8
iii

Getting Started 8

Locate the Tutorial Files 8

▼ Start the JES Framework 9

Creating a Serviceless Bundle 9

BundleActivator Implementation for greeting1 Bundle 10

Manifest File for the greeting1 Bundle 10

▼ Build greeting1 Bundle 10

▼ Run greeting1 Bundle 11

Creating a Service Interface and Implementation 11

GreetingService Interface 12

Casual GreetingService Implementation 12

BundleActivator Implementation for greeting2 Bundle 13

Manifest File for greeting2 Bundle 14

▼ Build greeting2 Bundle 14

▼ Run greeting2 Bundle 14

An Alternative Service Implementation 15

BundleActivator Implementation for greeting3 Bundle 16

▼ Build greeting3 Bundle 16

▼ Run the greeting3 Bundle 17

Using Another Service 17

Manifest File for the club Bundle 19

▼ Build the club Bundle 19

▼ Run the club Bundle 19

Try This 19

Using a Core JES Service: HttpService 20

BundleActivator for the greeting4 Bundle 21

Manifest File for the greeting4 Bundle 22

GreetingServlet Example 22
iv BookTitle • Month 2000

Try This 23

Where to Go from Here 23

 25

A. How to Modify JES Makefiles 25
Contents v

vi BookTitle • Month 2000

Preface

This is a test document.

Before You Read This Book

Include this section only if this book requires that the reader must have read other documents
first. This isn’t the spot for recommended reading—that comes later.

If readers must know how to do something or must have completed something before using
this book, tell them here. For example:

In order to fully use the information in this document, you must have thorough

knowledge of the topics discussed in these books:

■ Editorial Style Guide
■ Sun Microsystems New Look Book
■ Frame of Reference
vii

How This Book Is Organized

If you want to describe the contents of your document, use a live cross-reference to list each
chapter and give a brief description. Use the ChapterNumber and AppendixNumber cross-
reference formats to create the cross-reference. Chapter and appendix titles are no longer
included.

Chapter 1 describes entrance requirements for 14 trade schools. The chapter includes

an application form.

Appendix A should be used only by experienced technical writers in panic

situations.

Glossary is a list of words and phrases and their definitions.

Using UNIX Commands

Use this section to alert readers that not all UNIX commands are provided.
For example:

This document may not contain information on basic UNIX® commands and

procedures such as shutting down the system, booting the system, and configuring

devices.

See one or more of the following for this information:

■ Solaris Handbook for Sun Peripherals (If you are incorporating Solaris software
commands in your document, delete this sentence.)

■ AnswerBook2™ online documentation for the Solaris™ operating environment

■ Other software documentation that you received with your system
viii Java Embedded Server 2.0 Tutorial • August 2000

Typographic Conventions

Shell Prompts

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Command-line variable; replace

with a real name or value

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

To delete a file, type rm filename.

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
Preface ix

Related Documentation

Accessing Sun Documentation Online
The docs.sun.com sm web site enables you to access Sun technical documentation

on the Web. You can browse the docs.sun.com archive or search for a specific book

title or subject at:

http://docs.sun.com

Ordering Sun Documentation

Fatbrain.com, an Internet professional bookstore, stocks select product

documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center

on Fatbrain.com at:

http://www1.fatbrain.com/documentation/sun

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments

and suggestions. You can email your comments to us at:

Application Title PartNumber

Installation ABC Release Notes 801-xxxx

Service ABC System Service Manual 801-xxxx

Options DEF SBus Card Manual 800-xxxx
x Java Embedded Server 2.0 Tutorial • August 2000

docfeedback@sun.com

Please include the part number (8xx-xxxx-xx) of your document in the subject line of

your email.
Preface xi

xii Java Embedded Server 2.0 Tutorial • August 2000

CHAPTER 1

Java Embedded Server Tutorial

This tutorial explains basic concepts of the Open Source Gateway Initiative (OSGi)

service gateway architecture and the Java Embedded Server (JES), and teaches you

how to write and deploy your own services.

The code examples presented here can all be compiled, installed, and activated on a

running instance of the JES. You are encouraged to modify them and inspect how

their running results change. You can also use them as templates as you develop

your own services.

This tutorial does not cover every feature of the JES. It is an aid to get you started

and ease your learning curve. See the recommended readings at the end of this

tutorial to learn more on how to unleash the full power of the JES.

Concepts

In this section, we introduce the foundation concepts of the Java Embedded Server.

We revisit them when we work with concrete examples, which may help you put the

pieces together.

The Service Gateway Framework

The service gateway framework is the hosting platform from which services are

deployed and run. It provides the following functionality to all services it hosts:

■ Service registry

■ Bundle life cycle management

■ Tracking dependencies among services

■ Event notifications
1

How these work will become evident presently when we describe the interplay of

various entities within the framework.

Services

A service consists of Java classes that provide certain functionality. For example, an

HTTP service implements the HTTP protocol and can respond to requests from

HTTP clients; a vending machine service, on the other hand, examines the machine's

internal temperature, sets prices for merchandise, and dispenses soda cans.

Programmatically, a service can consist of any Java objects, usually designed with

interface and implementation separated. There are no other restrictions on what a

service can do and how it is implemented.

Bundles

A bundle is a JAR file that contains the services, Java classes, and resources of any

software component that runs on framework. It can contain one or more services,

which usually make up an integrated functional unit.

Bundle Contexts

The framework creates a bundle context when a bundle is activated. A bundle

context is the interface between the framework and a bundle. In other words, it

represents the execution environment for the bundle.

ServiceRegistrations and ServiceReferences

When you successfully register a service with the framework using

BundleContext.registerService a ServiceRegistration object is returned. You

can use a ServiceRegistration object to change the properties of the service or to

unregister the service.

A ServiceReference is a reference to a service. It can be used to examine the

properties of a service or to get the service object itself. Getting a service object is a

two-step process.
2 Java Embedded Server Developer Guide • August 2000

You obtain a ServiceReference using the String name of the interface or class that is

the type of the service, then use that ServiceReference to get service object. The

indirection provided by ServiceReferences allows a caller to examine various

properties of a service before committing to use it.

OSGi Service Gateway Architecture

FIGURE 1-1 shows the architecture of the OSGi (Open Service Gateway initiative)

service gateway. The Java Embedded Server is designed to comply with the OSGi

Specification Release 1.0. The JES software is written entirely in the Java

Programming Language, so must therefore run on top of a Java Virtual Machine

(VM). Above the Java VM layer comes a thin layer of the framework. The framework

is a platform from which bundles can be deployed.

FIGURE 1-1 OSGi Service Gateway Architecture

Each bundle contains some service, and can be installed, activated, updated,

deactivated, and uninstalled while it is hosted by the framework. This is the bundle

life cycle.

When a bundle is first installed, a dedicated bundle classloader is created to access

classes and resources provided by the bundle.

When a bundle is activated, it usually registers the service it provides with the

framework under the names of the service types. Henceforth, the service begins to

function, until the containing bundle is deactivated.

......

Framework

Java Virtual Machine

Operating System
V

en
di

ng
M

ac
hi

ne
S

er
vi

ce

Fa
xS

er
vi

ce

C
or

e
S

er
vi

ce
 2

C
or

e
S

er
vi

ce
 1

A
dm

in
 S

er
vi

ce

Lo
gS

er
vi

ce

H
ttp

S
er

vi
ce

Java Embedded Server
Chapter 1 Java Embedded Server Tutorial 3

At the bundle activation time, the framework also tries to resolve dependencies

among bundles. When bundle A needs to use classes or services provided by bundle

B, A is said to depend on B. The framework ensures that A is present or B is not

started.

Java Embedded Server is a set of core services, such as LogService and HttpService,

running on top of the framework. You may develop any service you need (a

FaxService and a VendingMachineService appear as examples), and they can work

with the existing JES core services.

Having discussed the concepts, let's see what means are available to us in Java

Embedded Server in order to realize these ideas.

Manifest

A manifest file is a standard text file in a JAR archive; it contains information about

the contents of the archive in headers. The OSGi has defined additional headers that

can be included in the manifest file for a bundle. These headers provide the

framework with “hooks" to the resources in the bundle, so that the framework

knows what to do with the bundle as it goes through its life cycle. Some of the most

essential headers are briefly explained below.

Bundle Activator

This header points to the bundle activator within the bundle. The bundle activator is

a class implementing the org.osgi.framework.BundleActivator interface. It

defines the customized start and stop logic when the framework activates and

deactivates the bundle. We'll see how this is done in our first example.

Import-Package andExport-Package

Bundles that offer classes for others to use declare the packages with the Export-

Package header; usually this involves the public service interfaces. Bundles that

need to use classes from other bundles declare the needed packages with the Import-

Package header. The framework is responsible for the matchmaking. We'll see an

example shortly.
4 Java Embedded Server Developer Guide • August 2000

A Tour Behind the Scenes

It's high time that we examined the chain of events that occur when a bundle is

installed, activated, stopped, and uninstalled from the framework. Note that some

"unimportant" actions are omitted for sake of clarity; see the OSGi Framework

Specification for complete descriptions.

1. A bundle is installed.

The framework reads the contents of the bundle and establishes its presence by

assigning it an ID and caching its location and state persistently.

2. The bundle is activated.

The framework first checks if the Java classes required by this bundle have been

exported by other bundles. If so, the start() method of the bundle's

BundleActivator is called; any service provided by the bundle is registered with

the framework. When this step is completed, the service starts running.

3. The bundle is deactivated.

The bundle’s BundleActivator.stop() method is called; usually the service

provided by the bundle is unregistered from the framework. When this step is

completed, the service stops running

4. The bundle is uninstalled.

The bundle is removed from the computer.

FIGURE 1-2 Anatomy of a bundle, its interaction with the framework after activation,
and its service registration in the framework..

Service Registry
Service Names Service

Implementation
{FooService} FooServiceImpl
{Service 1} ServiceImpl 1

......
{Service n} ServiceImpl n

Service Implementation (FooServiceImpl)

Service Interface (FooService)

Bundle

BundleActivator

Bundle Context

start stop

The Framework
Chapter 1 Java Embedded Server Tutorial 5

The Component-Based Programming
Model

Java Embedded Server follows a component-based programming model, as contrast

to the traditional library- or toolkit-based approach. Programming JES services is not

merely Object-Oriented Programming in Java, because JES entities such as services

and bundles have richer semantics than those of objects and classes in the Java

Programming Language. The following figure depicts a library-based architecture.

FIGURE 1-3 Architecture of a hypothetical library-based software product.

Compare this picture with FIGURE 1-1, the JES architecture, we can list the following

differences:

■ In library-based model, multiple layers of software abstractions stack up one on

top of another, while in component-based model, multiple software components

plug in side-by-side.

■ In library-based model, the sum of all libraries must be packaged together for the

product to work, while in component-based model, a subset of components can

be packaged together and serve useful functionality as a product.

■ In library-based model, one must rebuild and repackage the entire set of libraries

to fix bugs and add features during compile time, while in component-based

model, new components can be added or existing components updated in an

incremental way during runtime.

■ In library-based model, problems in lower layers can propagate up and affect the

stability of the entire software, while in component-based model, they are

insulated from one another.

Product

Application

Admin GUINetwork Properties

Generic Data Structures

Java Virtual Machine
6 Java Embedded Server Developer Guide • August 2000

■ In library-based model, changes made to public interface have less impact

because one has to rebuild the software in its entirety anyway, while in

component-based model, the cost of redoing public interface can be prohibitive

because other components may have relied upon it at runtime.

■ In library-based model, it is easy to follow the flow of control because

applications usually have one entry point (e.g., public static
main(String[] args)), while in component-based model, components are

controlled by a hosting environment and they interact with one another to

function.

In conclusion, component-based model requires more discipline on the part of

developers during design stage but provides more reliability, extensibility, and

flexibility over the library-based model during runtime.

Separation of Interface and
Implementation

Separation of interface and implementation encourages software reuse, improves

flexibility, and reduces maintenance cost. To the external caller of the service, its

interface is the only thing that is exposed. The methods that are available, what they

do, what arguments they take, what return value they are expected to produce, and

what exceptions they may potentially throw are all clearly documented in the

interface. The interface acts as a contract between the clients (callers) and the service.

The implementation of this interface, on the other hand, is private to the service; the

implementation is obliged to fulfill the specification of the interface, but it has much

flexibility in how the specification is met. As a result, you can have multiple

implementations for the same interface, which enables you to

■ take advantage of different environments; for example, a scientific computation

service can provide a compute method in its interface, but one implementation

can optimize for multiprocessor system while another can utilize multiple

computers over a network.

■ have useful abstractions; for example, a filesystem service can offer its callers

simple abstraction of reading, writing, and listing files, but it may have one

implementation over local hard disks and another over networked filesystem

such as NFS.

■ minimize impact as a result of bugfix or feature enhancement; software always

evolve; because of the separation of interface and implementation, the callers of

the service are insulated from changes made to the implementation. This benefit

can significantly contribute to the overall stability of the entire software system

built with this model.
Chapter 1 Java Embedded Server Tutorial 7

Separation of interface and implementation also forces the developer to think harder

during the design stage: it is desirable to have the minimal set of methods in the

service interface, no more, no less. Because the interface decides how services are

coupled together, once it is defined, it should remain unchanged. It would be very

costly to go back and change a service interface when many other services have

already come to rely on that piece of interface. This is one of the major challenges

developing for Java Embedded Server.

Creating Services for the JES

Enough theory. Let's work with some code examples to see things in action.

Steps to Develop a Bundle

In most cases, you follow these five steps to create a bundle that can be deployed on

the Java Embedded Server:

1. Design and write an interface for your service.

2. Implement the interface for your service.

3. Implement the org.osgi.framework.BundleActivator interface to handle

the start and stop logic of the bundle.

4. Write the manifest file for the bundle.

5. Package the manifest, bundle activator, and service files into a a single JAR file,

ready for deployment.

Getting Started

First, locate the tutorial example files, then start the JES fraemwork.

Locate the Tutorial Files

The complete set of examples are included with the distribution of the Java

Embedded Server, and can be found at install_dir/doc/tutorial directory, where

install_dir is the path to the where you have installed the JES. Each example goes

into a subdirectory; they are club , greeting1 , greeting2 , greeting3 ,

greeting4 . Each of the following sections is based on one example, whose location
8 Java Embedded Server Developer Guide • August 2000

will be given. The examples are ready to be compiled and run. Appendix A shows

you how to modify the makefiles if you want to move the examples out of the JES

distribution; this is desirable if you want to develop your own bundles independent

of the requirement of JES directory hierarchy.

FIGURE 1-4 Locating the Examples in the JES Directory Structure

▼ Start the JES Framework

While you work on the examples that follow, run the JES framework from one

terminal and run builds in another terminal.

1. Set the the CLASSPATH variable.

setenv CLASSPATH install_dir/lib/framework.jar

2. Start the JES framework.

java com.sun.jes.impl.framework.Main

3. Include remaining start up steps--install & start core bundles.

Creating a Serviceless Bundle

In this first example, we create a bundle that does not supply any services, but

simply prints “Hello” when started and “Bye” when stopped.

Location: install_dir/doc/tutorial/greeting1

Input files: Activator.java, greeting1.mf

Output files: greeting1.jar

install_dir
|-bin
...
|-doc

|-tutorial
|-club
|-greeting1
|-greeting2
|-greeting3
 |-greeting4
Chapter 1 Java Embedded Server Tutorial 9

BundleActivator Implementation for greeting1 Bundle

Since this bundle does not have any services, all the work is done inside its bundle

activator. The Activator class implements the

org.osgi.framework.BundleActivator interface, therefore it must define

start and stop methods with the logic particular to this bundle.

Manifest File for the greeting1 Bundle

The manifest file for greeting1, greeting1.mf, contains only one header. It tells the

framework to look for greeting1/Activator.class in the bundle and use it as

the activator.

CODE EXAMPLE 1-2 greeting1.mf

Bundle-Activator: greeting1.Activator

▼ Build greeting1 Bundle

Here are the steps to build an example. We will describe how to do this with

greeting1 example; the rest are similar.

1. Change to the example directory.

cd install_dir/doc/tutorial/greeting1

CODE EXAMPLE 1-1 BundleActivator implementation for greeting1

package greeting1;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.BundleException;

public class Activator implements BundleActivator {
public void start(BundleContext ctxt) throws BundleException {

System.out.println("Hello");
}

public void stop(BundleContext ctxt) throws BundleException {
System.out.println("Bye");

}
}

10 Java Embedded Server Developer Guide • August 2000

2. Invoke build command.

Type one of the following build commands on the command line.

The resultant bundle JAR file will be generated at install_dir/doc/tutorial/
greeting1.jar .

▼ Run greeting1 Bundle

3. Install the bundle just generated.

> install file:/doc/tutorial/greeting1.jar

4. Get the bundle ID for the bundle you have just installed.

> bundles
ID STATE LOCATION
-- --------- -------------------------
...
3 INSTALLED file:/.../doc/tutorial/greeting1.jar

5. Start the bundle using the bundle ID.

> start 3

Hello

6. Stop the bundle.

> stop 3

Bye

Creating a Service Interface and Implementation

In this section, we create a service that does something once it is started.

Furthermore, we want to write this service in a manner that its interface and

implementation are separated.

Location: install_dir/doc/tutorial/greeting2

Input files: Activator.java, greeting2.mf, GreetingService.java,

CasualGreetingImpl.java

Output files: greeting2.jar

TABLE 1-1 Build Commands for UNIX and Windows

UNIX Windows NT

gnumake nmake
Chapter 1 Java Embedded Server Tutorial 11

GreetingService Interface

The GreetingService.greet method requires three strings. Any implementation

of the GreetingService interface must supply a definition of the method..

Notice the detailed comments preceding the only method in the interface. The

javadoc tool generates API documentation from code comments. Familiarize

yourself with the tags and formats recognized by javadoc and use them in your

code, as your fellow developers will need this information as they use your service.

Casual GreetingService Implementation

As we know, cultural and social circumstances usually dictate how people greet each

other. This illustrates the need for separation of interface and implementation well.

Here we are to show an implementation of GreetingService in casual settings.

CODE EXAMPLE 1-3 GreetingService Interface

package greeting2.service;

public interface GreetingService {

/**
* Prints a form of greeting to the stdout for the named
* individual.
* @param firstName First name of the person
* @param lastName Last name of the person
* @param title Title of the person, e.g., Mr./Ms./Sir
*/

public void greet(String firstName, String lastName,
String title);

}

CODE EXAMPLE 1-4 Casual Greeting Implementation

package greeting2.impl;
import greeting2.service.GreetingService;

class CasualGreetingImpl implements GreetingService {
public void greet(String firstName,

 String lastName,
 String title) {

System.out.println("Hey, I'm Scott. Nice to meet you, "
 + firstName);

}
}

12 Java Embedded Server Developer Guide • August 2000

Notice that the implementation of the greet method matches the signature

stipulated in the interface exactly. Additionally, the implementation class resides in a

different Java package than that of the service interface; unlike the service interface,

which is public, the implementation class is package private.

BundleActivator Implementation for greeting2 Bundle

Because our bundle now provides services, a few more methods, such as registering

and unregistering services, are necessary in the BundleActivator implementation.

The framwork passes the BundleContext ctxt , to the start and stop methods.

The bundle context is provided to the bundle so that it can interact with the

framework through the BundleContext interface.

When the start method is called, it creates an instance of the service

implementation class (greetingSvc) and a simple property associated with the

service. It then registers the service under its type along with the property.

The stop method unregisters the service.

CODE EXAMPLE 1-5

package greeting2.impl;
import java.util.Properties;
import org.osgi.framework.*;
import greeting2.service.GreetingService;

public class Activator implements BundleActivator {
private ServiceRegistration reg = null;
public void start(BundleContext ctxt) throws BundleException {

GreetingService greetingSvc = new CasualGreetingImpl();
Properties props = new Properties();
props.put("description", "casual");
reg = ctxt.registerService

("greeting2.service.GreetingService",
greetingSvc, props);

}

public void stop(BundleContext ctxt) throws BundleException {
if (reg != null)

reg.unregister();
}

}

Chapter 1 Java Embedded Server Tutorial 13

Manifest File for greeting2 Bundle

Because we intend to offer services for other bundles to use, we must export the Java

package in which the service interface is defined.

The advantage of putting implementation classes and service interfaces into

different Java packages becomes obvious here: by only exporting the interface

package, callers from other bundles do not have any access to the implementation

details of the service.

▼ Build greeting2 Bundle

1. Change to the example directory.

cd install_dir/doc/tutorial/greeting2

2. Invoke build command for your system.

gnumake # UNIX
nmake # Windows

The make command generates the JAR file install_dir/doc/tutorial/
greeting2.jar .

▼ Run greeting2 Bundle

1. Install the bundle just generated

> install file:/doc/tutorial/greeting2.jar

2. Get the bundle ID for the bundle you have just installed.

> bundles

3. Start the bundle using the bundle ID.

> start greeting2_bundle_id

When you start the greeting2 bundle, no messages appear. This is to be expected, as

the services will not exhibit what they do until they are called upon by some other

services.

4. Stop the bundle.

CODE EXAMPLE 1-6 greeting2.mf

Bundle-Activator: greeting2.impl.Activator
Export-Package: greeting2.service
14 Java Embedded Server Developer Guide • August 2000

An Alternative Service Implementation

Location: install_dir/doc/tutorial/greeting3

Input files: Activator.java, greeting3.mf, FormalGreetingImpl.java,

GreetingService.java

Output files: greeting3.jar

In a formal setting, we would want to implement our GreetingService interface

as follows.

CODE EXAMPLE 1-7 Formal Greeting Implementation

package greeting3.impl;
import greeting2.service.GreetingService;
public class FormalGreetingImpl implements GreetingService {

public void greet(String firstName,
String lastName,
String title) {

System.out.println
("My name is Scott McNealy. How do you do, "

+ title + " " + lastName + "? "
+ "It's a pleasure to make your acquaintance.");

}
}

Chapter 1 Java Embedded Server Tutorial 15

BundleActivator Implementation for greeting3 Bundle

The BundleActivator must register the correct implementation with the

framework.

Here in the start method, an instance of FormalGreetingImpl class is

instantiated, and FormalGreetingImpl implements the same GreetingService
interface from greeting2 package.

▼ Build greeting3 Bundle

The greeting2 example must be compiled before greeting3 is compiled, because the

implementation in greeting3 needs the interface class to be compiled in the previous

example.

1. Change to the example directory.

cd install_dir/doc/tutorial/greeting3

2. Invoke build command for your system.

gnumake # for UNIX or
nmake # for Windows

The make command generates the JAR file install_dir/doc/tutorial/
greeting3.jar .

CODE EXAMPLE 1-8 Modified BundleActivator Implementation

package greeting3.impl;
import java.util.Properties;
import org.osgi.framework.*;
import greeting2.service.*;
public class Activator implements BundleActivator {

private ServiceRegistration reg = null;
public void start(BundleContext ctxt) throws BundleException {

GreetingService greetingSvc = new FormalGreetingImpl();
Properties props = new Properties();
props.put("description", "formal");
reg = ctxt.registerService

("greeting2.service.GreetingService",
greetingSvc, props);

}

public void stop(BundleContext ctxt) throws BundleException {
if (reg != null)

reg.unregister();
}

}

16 Java Embedded Server Developer Guide • August 2000

▼ Run the greeting3 Bundle

1. Install the bundle just generated

> install file:/doc/tutorial/greeting3.jar

2. Get the bundle ID for the bundle you have just installed.

> bundles

3. Start the bundle using the bundle ID.

> start greeting3_bundle_id

When you start the greeting3 bundle, no messages appear. This is to be expected, as

the services will not exhibit what they do until they are called upon by some other

services. We demonstrate this in the next example.

Using Another Service

Location: install_dir/doc/tutorial/club

Input files: Activator.java, club.mf

Output files:

One bundle's service can be used by another more elaborate service to achieve more

complex overall functionality. Suppose we have a club service that enrolls new

members and during the process, we want to use an implementation of

GreetingService to show greetings to newcomers. In this example, the
Chapter 1 Java Embedded Server Tutorial 17

ClubService bundle depends upon that of the GreetingService. This example does

not show how to define the ClubService bundle; it focuses on obtaining the

GreetingService and using it in its activator.

When club bundle is started, it first gets the service reference to the service it is

going to use; it does this by providing two parameters—the interface name of the

service and an LDAP filter on the service properties—to the

getServiceReferences method. We need the assistance of the LDAP filter to

pinpoint the instance of the service we intend to use, as we know there may be two

implementations of the GreetingService interface registered in the framework.

Recall that the description property has been registered with the service.

Then the activator calls the getService method using the service reference to get

an instance of the correct GreetingService object. Because the

greeting2.GreetingService has registered with the framework, and the club

bundle has declared its dependency on the package in its manifest (see below) , the

framework is able to satisfy the request.

CODE EXAMPLE 1-9 BundleActivator for the ClubService Bundle

package club;
import org.osgi.framework.*;
import greeting2.service.GreetingService;

public class ClubActivator implements BundleActivator {
public void start(BundleContext ctxt) throws BundleException{

ServiceReference[] ref = ctxt.getServiceReferences
("greeting2.service.GreetingService",

"(description=casual)");
GreetingService greetingSvc

= (GreetingService) ctxt.getService(ref[0]);
greetSvc.greet("Bill", "Gates", "Chairman");

}

public void stop(BundleContext ctxt) throws BundleException {
}

}

18 Java Embedded Server Developer Guide • August 2000

Manifest File for the club Bundle

The Import-Package header in the manifest file specifies out the Java package

required by the club bundle. When the framework starts the bundle, the framework

will try to ensure that the needed packages have been offered (exported) by the

greeting2 bundle; if so, the club bundle will be activated; otherwise, it will not get

started.

▼ Build the club Bundle

1. Change to the example directory.

cd install_dir/doc/tutorial/club

2. Invoke build command for your system.

gnumake # UNIX
nmake # Windows

The make command generates the JAR file install_dir/doc/tutorial/club.jar .

▼ Run the club Bundle

Since the club bundle depends upon the service provided by greeting2 bundle, make

sure the greeting2 bundle is installed and activated before you start the club bundle.

1. Install the bundle just generated

> install file:/doc/tutorial/club.jar

2. Get the bundle ID for the bundle you have just installed.

> bundles

3. Start the bundle using the bundle ID.

> start club_bundle_id

******What happens?******

Try This

One way to examine the dependency relationships is from the JES console. At the

prompt, type.

> exportedpackages

CODE EXAMPLE 1-10 club.mf

Bundle-Activator: club.ClubActivator
Import-Package: greeting2.service
Chapter 1 Java Embedded Server Tutorial 19

and you will see the following display:

Package: greeting2.service (0.0.0)
Exported by: 1 (file:/.../greeting2.jar)
Imported by: 2 (file:/.../ club.jar)

This indicates that the Java package greeting2.service version 0.0.0 has been

exported by bundle greeting2.jar and imported by bundle club.jar .

Using a Core JES Service: HttpService

Location: install_dir/doc/jes/tutorial/greeting4

We've seen how you can have one service use another service. The Java Embedded

Server includes a set of core services that you may find useful. In this example, we'll

see how to use one of these services, the HttpService.

The main functionality of JES HttpService is to map resources to URL namespace, so

that when a client requests an URL, the corresponding resource is delivered using

HTTP protocol. Resources can be some HTML files, classes from bundles, or servlets.

So far we have been sending output messages to stdout. In this example, the

greeting message appears in a web browser. To do so, we are to write a servlet and

ask the help of JES HttpService.
20 Java Embedded Server Developer Guide • August 2000

BundleActivator for the greeting4 Bundle

Much of the preparation is done in the activator.

The framework passes the BundleContext to the BundleActivator.start
method. It gets a handle to the JES HttpService by calling getService method of

the BundleContext object, passing in HttpService' service reference; then it registers

our servlet with HttpService under the specified URL alias (held in

GREETING_ALIAS).

When the bundle is stopped, the servlet is unregistered from HttpService using the

same alias it was registered under. What's missing is that we do not have a service,

nor do we have service registration or unregistration in this example! This is

completely permissible: a bundle can simply just have classes that can be invoked by

BundleActivator , and does not contain any services.

CODE EXAMPLE 1-11 Bundle Activator for HttpService Example

package greeting4;
import com.sun.servicespace.wizard.ActivatorWizard;
import com.sun.servicespace.*;
import com.sun.jes.service.http.*;

public class BundleActivator implements BundleActivator {
private HttpService httpService = null;
private GreetingServlet greetingServlet = null;
private static String GREETING_ALIAS = "/jes/greetings.html";

public void start(BundleContext ctxt) throws BundleException {
ServiceReference ref = ctxt.getServiceReference

("org.osgi.service.http.HttpService");
this.httpService = (HttpService) ctxt.getService(ref);
this.greetingServlet = new GreetingServlet();
try {

servletReg =
httpService.registerServlet(GREETING_ALIAS,

greetingServlet, null);
}
catch (Exception ex) {

System.err.println(ex);
throw new BundleException(ex.getMessage());

}
}

public void stop(BundleContext ctxt) throws BundleException {
}

}

Chapter 1 Java Embedded Server Tutorial 21

See the HttpService section in the Developer Guide for complete coverage of the

usage of HttpService. ****XREF TO DEV GUIDE******

Manifest File for the greeting4 Bundle

The manifest file defines the dependency relationship.

Bundle-Activator: greeting4.Activator

Import-Package: org.osgi.service.http

GreetingServlet Example

And here is the servlet, where all the magic happens.

This servlet responds to HTTP GETrequests, generates and returns the HTML page.

You can go to a browser and type the URL http:// host:8080/jes/
greetings.html .

CODE EXAMPLE 1-12 GreetingServlet Example

package greeting4;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
/**
* This servlet responds to HTTP GET requests for the URL under
which
* this servlet is registered with HttpService. It generates the
* greeting message in HTML and returns to the client.
*/
class GreetingServlet extends HttpServlet {

public void doGet(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/html");
ServletOutputStream out = resp.getOutputStream();
out.println("<HTML><HEAD>");
out.println("<TITLE>Greetings</TITLE></HEAD>");
out.println("<BODY><H1>Hey, nice to meet you!</H1>");
out.println("</BODY></HTML>");
out.close();

}
}

22 Java Embedded Server Developer Guide • August 2000

Note – The URL is programmed into our bundle; it does not map to a directory tree

on the disk.

Try This

In our examples, when an error happens, we simply print its message (look for

System.err.println() lines). Try to change the code so that errors are logged

using JES core service LogService.

Where to Go from Here

The OSGi Service Gateway Specification specifies the complete features of the

framework. It delves into details of the concepts described at the beginning of this

tutorial, and discusses their APIs in full. This document is more targeted to a

framework implementor, but as a bundle developer, you have much to gain in

understanding what's under the hood in the hosting environment.

Java Embedded Server Developer Guide describes the functionality of the core

services provided by JES.
Chapter 1 Java Embedded Server Tutorial 23

24 Java Embedded Server Developer Guide • August 2000

APPENDIX A

How to Modify JES Makefiles

The following is the Makefile used to build the examples in this tutorial.

GNUmakefile for greeting1 example

SRCDIR = greeting1 FILES = \

GreetingService.java

include ../GNUcommon.make

--
GNUcommon.make for all examples; on Windows NT platform, a
corresponding common.make is provided.

The example GNUMakefile must define the following variables and then

include this file.

SRCDIR: the name of the example directory.

JARNAME: the name of the jar file for the bundle generated.

FILES: .java files to be compiled.

EXTRA_CLASSFILES: Other .class files to include in the .jar file.

ifndef JARNAME

JARNAME = $(SRCDIR).jar

endif

The path to where JES has been installed; if it is not an

absolute path, it is relative to the directory where gnumake is

invoked.

INSTALLDIR = ../../../..

If JES_JAVA_HOME is defined, use javac and jar from it, else from

the PATH.

ifdef JES_JAVA_HOME

JAVAC=$(JES_JAVA_HOME)/bin/javac

JAR=$(JES_JAVA_HOME)/bin/jar
A-25

else

JAVAC=javac

JAR=jar endif

LIBS = $(INSTALLDIR)/lib/manager.jar:$(INSTALLDIR)/lib/
jsdk.jar:$(INSTALLDIR)/lib/remote.jar:$(INSTALLDIR)/lib/
jesservices.jar

CLASSFILES := $(FILES:.java=.class)

xCLASSFILES := $(CLASSFILES:%=$(SRCDIR)/%)

all:: ../$(JARNAME)

../$(JARNAME): $(CLASSFILES) $(EXTRA_CLASSFILES) Manifest

cd .. ; \

$(JAR) cmf $(SRCDIR)/Manifest $(JARNAME) $(xCLASSFILES)
$(EXTRA_CLASSFILES)

$(CLASSFILES): $(FILES)

CLASSPATH=$(LIBS):..:. ; \

export CLASSPATH; \

$(JAVAC) $?

$(EXTRA_CLASSFILES)::

clean:

/bin/rm -f $(CLASSFILES) ../$(JARNAME)

By changing variables SRCDIR , INSTALLDIR , JARNAME , and FILES , you will

have some flexibility in determining the outcome of the build. If you decide to move

the tutorial out of JES distribution directory tree, for example, you must modify the

INSTALLDIR (currently ../..) to point to the path where JES is installed, as our

examples needs JES classes in order to compile.

Also we assume commands such as javac and jar are correctly included in your

PATH environment variable; if not, you may want to spell out the absolute path to

these commands on your system. Additionally, you may find the Makefile

inadequate if your package goes into multiple levels of directories. In any case, this

Makefile is meant to get things going, and unlike other examples in this tutorial,

does not try to be exemplary.
A-26 BookTitle • Month 2000

	Java Embedded Server 2.0 Tutorial™
	Contents
	1. Java Embedded Server Tutorial�1
	A. How to Modify JES Makefiles�25

	Preface

	Before You Read This Book
	How This Book Is Organized
	Using UNIX Commands
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Sun Welcomes Your Comments
	1
	Java Embedded Server Tutorial

	Concepts
	The Service Gateway Framework
	Services
	Bundles
	Bundle Contexts
	ServiceRegistrations and ServiceReferences
	OSGi Service Gateway Architecture
	FIGURE�1�1 OSGi Service Gateway Architecture

	Manifest
	Bundle Activator
	Import-Package and Export-Package

	A Tour Behind the Scenes
	1. A bundle is installed.
	2. The bundle is activated.
	3. The bundle is deactivated.
	4. The bundle is uninstalled.
	FIGURE�1�2 Anatomy of a bundle, its interaction with the framework after activation, and its serv...

	{FooService}
	{Service 1}

	{Service n}

	The Component-Based Programming Model
	FIGURE�1�3 Architecture of a hypothetical library-based software product.

	Separation of Interface and Implementation
	Creating Services for the JES
	Steps to Develop a Bundle
	1. Design and write an interface for your service.
	2. Implement the interface for your service.
	3. Implement the org.osgi.framework.BundleActivator interface to handle the start and stop logic ...
	4. Write the manifest file for the bundle.
	5. Package the manifest, bundle activator, and service files into a a single JAR file, ready for ...

	Getting Started
	Locate the Tutorial Files
	FIGURE�1�4 Locating the Examples in the JES Directory Structure

	Start the JES Framework
	1. Set the the CLASSPATH variable.
	2. Start the JES framework.
	3. Include remaining start up steps--install & start core bundles.

	Creating a Serviceless Bundle
	BundleActivator Implementation for greeting1 Bundle
	CODE�EXAMPLE�1�1 BundleActivator implementation for greeting1

	Manifest File for the greeting1 Bundle
	CODE�EXAMPLE�1�2 greeting1.mf

	Build greeting1 Bundle
	1. Change to the example directory.
	2. Invoke build command.
	TABLE�1�1 Build Commands for UNIX and Windows

	Run greeting1 Bundle
	3. Install the bundle just generated.
	4. Get the bundle ID for the bundle you have just installed.
	5. Start the bundle using the bundle ID.
	6. Stop the bundle.

	Creating a Service Interface and Implementation
	GreetingService Interface
	CODE�EXAMPLE�1�3 GreetingService Interface

	Casual GreetingService Implementation
	CODE�EXAMPLE�1�4 Casual Greeting Implementation

	BundleActivator Implementation for greeting2 Bundle
	CODE�EXAMPLE�1�5

	Manifest File for greeting2 Bundle
	CODE�EXAMPLE�1�6 greeting2.mf

	Build greeting2 Bundle
	1. Change to the example directory.
	2. Invoke build command for your system.

	Run greeting2 Bundle
	1. Install the bundle just generated
	2. Get the bundle ID for the bundle you have just installed.
	3. Start the bundle using the bundle ID.
	4. Stop the bundle.

	An Alternative Service Implementation
	CODE�EXAMPLE�1�7 Formal Greeting Implementation
	BundleActivator Implementation for greeting3 Bundle
	CODE�EXAMPLE�1�8 Modified BundleActivator Implementation

	Build greeting3 Bundle
	1. Change to the example directory.
	2. Invoke build command for your system.

	Run the greeting3 Bundle
	1. Install the bundle just generated
	2. Get the bundle ID for the bundle you have just installed.
	3. Start the bundle using the bundle ID.

	Using Another Service
	CODE�EXAMPLE�1�9 BundleActivator for the ClubService Bundle
	Manifest File for the club Bundle
	CODE�EXAMPLE�1�10 club.mf

	Build the club Bundle
	1. Change to the example directory.
	2. Invoke build command for your system.

	Run the club Bundle
	1. Install the bundle just generated
	2. Get the bundle ID for the bundle you have just installed.
	3. Start the bundle using the bundle ID.

	Try This

	Using a Core JES Service: HttpService
	BundleActivator for the greeting4 Bundle
	CODE�EXAMPLE�1�11 Bundle Activator for HttpService Example

	Manifest File for the greeting4 Bundle
	GreetingServlet Example
	CODE�EXAMPLE�1�12 GreetingServlet Example

	Try This

	Where to Go from Here
	A
	How to Modify JES Makefiles

