
Linux Software Engineering
-

Towards a Modern AutoFS

By: Mike Waychison <michael.waychison@sun.com>
Edited By: Tim Hockin <thockin@sun.com>

Copyright 2003-2004, Sun Microsystems, Inc.

Page 1 of 34

Table of Contents
1 Abstract...3
2 Introduction..3
3 Requirements...5
4 Analyzing the Alternatives..7
5 Proposed implementation..10

5.1 Indirect Maps..11
5.1.1 Browsing..13

5.2 Direct Maps...14
5.3 Multimounts and Offsets...15

5.3.1 Explanation..15
5.3.2 Implementation...17
5.3.3 Multimounts without root offsets..19

5.4 Expiry...20
5.5 Handling Changing Maps..22

5.5.1 Base Triggers...23
5.5.2 Forcing Expiry to Occur...24

5.6 The Userspace Utility...24
6 New Facilities..25

6.1 Mountpoint file descriptors...25
6.2 Native Expiry Support..27
6.3 Cloning super_block..29

6.3.1 The --bind problem...30
7 Scalability..31
8 Conclusion...32

Page 2 of 34

1 Abstract
Automounting is a system that allows local and network filesystems to be mounted as
needed. The automount configuration for a system is distributed via flat files or via
network based lookups. This can become a difficult system to get right given the large set
of features required and some new features available in Linux today. By breaking out the
task of automounting from a daemon into a usermode helper application, we are able to
simplify the architecture in both userspace and kernelspace. This enables us to solve
some existing problems, deal with Linux filesystem namespaces, and gives us an
architecture to provide per-namespace automount configurations. This document
describes such a system and details what infrastructure needs to be added to the Linux
kernel before such a system can be implemented.

2 Introduction
Traditionally, automounting has been implemented in one of two ways. The earlier
implementations usually handled the entire problem of automounting by creating a
userspace NFS server. More modern implementations have added kernel support directly
by either modifying the VFS layer or by creating filesystems that cope with the problem.
Both of these architectures have traditionally relied on one or more daemons that
handled all policy in userspace and were responsible for performing the actual mounting
of filesystems.

The earlier implementations that used a userspace NFS server worked by mounting NFS
shares at appropriate locations in the filesystem tree. The daemon that served those
shares would then be able to trap all directory traversals and perform mount actions as
required. Some systems have also used similar techniques to catch triggering actions and
have the desired filesystem mounted elsewhere, using symbolic links that point back to
them. These systems lent themselves to difficult administration and often lead to hung
filesystems and cruft mounts when the daemon was unexpectedly killed.

Later implementations placed traps directly into the kernel by creating a new filesystem
called ‘autofs’. This filesystem would be responsible for triggering on directory traversals
and would pass mount requests up to userspace. The kernel infrastructure became
necessary as it became more and more evident that implementing everything in userspace
became extremely tedious and difficult to properly manage.

Different architectural models exist for daemon implementations. Solaris currently uses a
single daemon approach that handles all requests coming from kernelspace. This allows
for easy management of changing maps and for dealing with the expiry of nested maps.
The single daemon approach was also preferred because it consolidated any process
overhead for the entire system into one process.

One of the difficulties in managing a single daemon automount system is that the entire
system must be tooled to work asynchronously. This includes all components from
performing NIS lookups to performing NFS mounts. Although this is an achievable goal, it

Page 3 of 34

requires a lot of work. It is much simpler to have a single process for each automount
trigger that uses the existing synchronous facilities.

Unlike Solaris, Linux uses a multi-process daemon approach. This system works
adequately given the level of functionality it aims to support, but it is not without flaws.
Linux currently only supports the use of indirect maps and the nesting of maps via the
fstype=autofs mount option. Each indirect mountpoint has exactly one daemon and one
map associated with it. All map lookups are performed synchronously within the daemon.
This means that a lookup for an entry within a given mount may block and may cause a
second lookup within the same indirect mount to block unnecessarily. This is a fair design
decision as both entries are determined to be coming from the same source and will
equally block1. Mounts are handled in an asynchronous fashion by forking and executing
the mount(1) command. Linux's implementation is multi-process in the sense that each
indirect mountpoint has an associated daemon process. Nesting of maps is handled by
maintaining parent-child relationships between daemon processes. A parent process
manages the parent map. When an entry in this map is accessed which has the
'fstype=autofs' option specified, the daemon forks and executes a new copy of itself. This
child daemon is responsible for the nested map. The two processes communicate with
each other using signal IPC so that they may synchronize expiry of the nested map.

One problem with Linux’s multi-process approach is that it does not handle lazy mounts in
multimount entries. This is evident in the implementation of automount 3.9.99-4.0.0-
pre10 (the most current release at the time of this writing). In this daemon
implementation, multimounts are not lazy mounted and will, by default, attempt to
mount all entries in the multimount immediately. It will also, by default, fail if any of the
filesystems fail to mount properly. This latter problem has been quick-fixed by the
addition of a 'nostrict' option for multimounts. This leads to large numbers of potentially
unneeded filesystems being mounted and causes unnecessary latency. A multimount
entry may contain multiple shares from different hosts and mounting them all can cause a
noticeable lag to a user application. Mounting unneeded remote filesystems also
increases the likelihood that one of the filesystems will go stale and hang processes which
attempt to access them. A filesystem can go stale when the system serving it crashes, is
rebooted or when network connectivity is lost. For example, depending on the
configuration given to an NFS client, a crashed server will cause all processes accessing
the NFS filesystem to hang indefinitely.

Another flaw that both Solaris' and Linux's automount models have is that neither lends
itself to dealing nicely with filesystem namespaces, a new feature in Linux as of kernels
2.4.19 and 2.5.22. Namespaces allow a system to have multiple distinct mount
hierarchies. Namespaces are created by a call to the clone(2) system call with the
CLONE_NEWNS flag. This call creates a new process as it usually would, but the new
process receives an entirely new copy of the parent process’s namespace. This is done by
creating a new mount table for the given process, and essentially re-executing all previous

1 The exception to this is of course any networked map that is being served from a slave server. Any cached entries may be
returned at different speeds and blocking times may actually vary. A second example of where this rule doesn't apply is
when a local file-backed map is referenced, which in turn includes another map from the network.

Page 4 of 34

mounts in the new mount table. This creates a completely distinct mount table, and
allows any changes such as bind mounts, moved mounts, new mounts, and unmounts to
only be reflected within that namespace. This idea was partially borrowed from
distributed operating systems such as Plan 9i and Springii, which allows users to create
their own mount hierarchies, independent from any other user.

The key as to why these automounting implementations cause problems when using
namespaces is that the previous implementations rely on a daemon process that
inherently resides within a single namespace. Whenever an autofs mount is triggered,
the kernel communicates with the daemon, which in turn mounts the filesystem onto the
given path. Unfortunately, this breaks cross namespace functionality because the
mounted filesystem is grafted into the daemon’s namespace, which may or may not be
the same namespace as used by the triggering application. Namespaces are designed
such that cross-namespace facilities are deliberately absent. The easiest method for
performing any cross-namespace functions is to execute within the alternative
namespace.

Determining whether a process is a user application causing a trigger or an automount
daemon performing a mount has also traditionally been difficult and required special
casing. We can avoid any such special casing by providing a file descriptor that describes
the target directory to the automounter, which would in turn fchdir(2) to the target
location.

With the current state of automount understood, we can explore the problems that exist
today and look at new approaches to automounting.

3 Requirements
A new automount system involves several new requirements in order to work gracefully
with new Linux facilities. To enumerate these requirements we must start by examining
the current implementations and determining where things begin to break. Specifically,
we will look at the current modes of userspace / kernelspace communication used by both
the current Linux autofs3 and autofs4 implementations.

Traditionally the autofs filesystem has needed a way to distinguish whether an
application that traverses into an autofs mount is a regular user process, or the daemon
coming in to perform a mount. This has previously been handled in Linux by identifying
the daemon using its process group, as registered at mount time. The use of the
daemon's process group not only abuses Unix semantics, but also makes handling
complex automount hierarchies very difficult. It forces the implementation to handle
nested mounts using distinct processes in order to traverse the outer directories as if it
were not the automounter.

Another big caveat to the current approach is the system’s reliance on the automount
daemon registering an open pipe with the kernel. This registration is made at mount time
using a mount option to pass the pipe's file descriptor. This kind of communication
channel registration makes for a system that is incapable of self-healing. It is impossible

Page 5 of 34

in this form of communication for the daemon to disconnect from the kernel and
reconnect. A daemon that dies (accidentally or forcefully) will leave the system with
autofs filesystems mounted yet stuck in what is called a ‘catatonic’ state. The autofs
filesystems will give up trying to communicate with their respective daemons and will not
process any new triggers. On top of that, any expiry runs that should be occurring will
cease to run as they are invoked by the daemon itself2. This forces an administrator to
either manually unmount all the filesystems left behind, or more often than not, simply
restart the daemon, causing more filesystem to be mounted over the existing stale ones
in wait for the next reboot.

Another reason one would want to move away from a single daemon approach is because
automounting semantics are not very clear when namespaces are used. One of the
driving forces behind implementing distinct namespaces in Linux is to allow the root user
to create distinct mount environments for differing services and users. This is different
from chrooting because processes outside of the chroot environment can still navigate any
new mountpoints within the chroot. When using namespaces, processes cannot navigate
mounts that are not within their own namespace.

One particularly useful advantage to namespaces is that a user may mount a privileged
filesystem such as a Samba share, without allowing any other users to see the mount in
question. Not even the root user himself would be able to gain access to the contents of
the filesystem. Another possibility of namespaces is that a system may be configured such
that upon login, the login process could create a new namespace for that user and bind
mount $HOME/tmp over /tmp. In effect, the user has a private /tmp directory that no
other user is capable of accessing.

Namespaces are currently implemented such that root can create a new namespace by
deriving from an existing namespace. From this derivation, the namespace may be
completely customized by adding and removing mounts in the system. Given the current
Linux autofs implementation, any derived namespace will inherit autofs filesystems, but
they do not work as expected, as the persistent daemon has no access to this namespace
and cannot thus mount new filesystems upon trigger. Instead of the mount occurring in
the derived namespace, where it was triggered, the mount will occur in the original
namespace in which the daemon is running and not be visible from the triggering
namespace. Further, any filesystems that were automounted in the original namespace
will persist in the new namespace and will never expire. The original mount will expire in
its own namespace but the cloned copy of it will not be visible to the daemon. Even if the
kernel (which can see all namespaces) told the daemon that the mount needed to be
expired, the daemon itself has no way to unmount the filesystem in a namespace other
than its own. This is clearly not the desired functionality.

Ideally, one would like to properly be able to inherit automount triggers when creating a
new namespace. Automount triggers would ideally work as configured in the parent

2 Expiry is triggered from userspace via an ioctl on the root directory of the autofs filesystem. The filesystem will in turn
check to see if any of the current sub-mounts have been inactive for some period of time and will return the path(!) of the
entry to expire back to userspace. Userspace will then attempt to unmount the path using umount(8).

Page 6 of 34

namespace, but also be removable and installable using a different automount
configuration. It is also desirable to have a system that is not reliant on a persistent
daemon and which is capable of healing any stale triggers. The most obvious approach to
handle these kinds of problems is to remove any persistent namespace context – namely
the kernel's reliance on a single daemon, while providing more namespace context during
the mounting process.

The following new set of architectural requirements become necessary:

• Automount triggers should continue to operate properly within a cloned namespace.
We want to be sure that an automount trigger that exists in both the parent and child
namespaces will cause a mount to occur in the appropriate namespace only.

• Automount triggers that are inherited from a parent namespace should remain distinct
from their parent counterpart. We cannot allow a user in one namespace to alter the
automount configuration across multiple namespaces.

• Filesystems that have been automounted and duplicated into a cloned namespace
should continue to expire.

• The addition or removal of an automount trigger should only affect the namespace in
which the change applies.

In addition, the following functions are required above and beyond the existing Linux
automount implementation in order to be in line with the functionality provided by other
Unix implementations:

• Both direct and indirect maps should work as expected.
• The system should expire and unmount any unused automounted filesystems.
• Lazy mounting should occur wherever possible.
• The system must be able to scale to thousands of mounts.
• The browsing of indirect maps should be supported.
• The system should be able to handle changing maps and update the current

configuration as required.

4 Analyzing the Alternatives
Working with these requirements in mind, different types of architectures can be
considered. Several facets of each potential architecture need to be examined.

1) Are any of the required facilities to implement this architecture already in place?
2) How much state is duplicated between userspace and in kernelspace?
3) How well can automount triggers be handled in a multi-namespace

environment?
4) How simple is the implementation and how prone is it to error?

With these questions, we can evaluate different architectures for our new system. The
following are a couple differing ways a new automounting system can be architected.

Page 7 of 34

1) Perform everything in kernelspace. There is no need for a daemon. A utility will
communicate with the kernel to install all the triggers. It is the kernel's responsibility
to catch all directory traversals that require a new mount to occur. The kernel also
handles name-service lookups, map entry parsing and performing the actual mounts.

Pros:
• Makes handling cross-namespace triggers a lot easier as full access to kernel

data-structures is available.
• Managing atomicity when handling a trigger is greatly simplified.
• Full access to map resources is available.

Cons:
• Lookups being performed in the kernel places an enormous amount of logic in

the kernel that is probably better left in userspace.
• Does not leverage the benefit of using the mount(8) utility which already handles

mounting different filesystems very well. Many filesystems, notably NFS and
SMB, have differing APIs for handling mounts and require packed structures to be
passed to the kernel.

• Requires new APIs to be put in place that will allow userspace applications to
remove triggers from their mount table.

• Canceling a trigger action (e.g.: via a SIGINT) becomes much more difficult to
handle properly.

2) Continue using a multiprocess daemon using file descriptors to describe the target
mountpoints. Use a daemon similar to that used in the current Linux automount
package. Augment the kernelspace/userspace communication protocol so that we can
have the daemon mount and unmount on file descriptors (which are namespace
aware) instead of by pathnames (which are namespace dependent).

Pros:
• Automounting continues to work across a cloned namespaces.

Cons:
• Requires new API that allows the passed back file descriptor to be re-associated

with a map and key.
• Would require one persistent process per direct/indirect mountpoint.
• Difficult to handle lazy mounting of multimounts.
• Difficult to manage a large hierarchy of processes that is continuously in flux.
• Duplicates structure information found in the kernel.
• Doesn't allow for clean administration of differing automount schemas across

different namespaces.
• Requires new system calls to natively support mounting and unmounting on a

file descriptor.
• Cloned namespaces are left with automount triggers that do not have a daemon

running in the new namespace.

Page 8 of 34

3) Create a single process daemon that is capable of handling all trigger requests across
the system. Again, uses file descriptors passed back from kernelspace to describe
mountpoint targets.

Pros:
• Consolidated process and memory overhead.
• Can be done without maintaining too much state in the userspace daemon.
• Continues to work as desired across cloned namespaces.

Cons:
• Requires new API for grabbing the file descriptor on which to mount, and

associate the proper map sources.
• Access to map information across namespaces is difficult to access. Files may

differ, as may network service client configurations.
• Requires new system calls to natively support mounting and unmounting on a

file descriptor.
• Requires asynchronous infrastructure to handle synchronous name service APIs.
• Managing differing automount configurations becomes difficult.

4) Use a usermode helper application that handles the trigger requests. Contextual
information is passed to the kernel when installing the automount trigger. This
information is then passed back to a usermode helper application that is invoked on
each triggering action. The usermode helper is invoked within the triggering action's
namespace. All lookup logic and mounting is handled by the usermode helper which
then mounts the desired filesystem on a given file descriptor which describes the target
directory.

Pros:
• API for passing file descriptor and associated map information is already in place.

All information can be passed in to the helper application via command line
arguments, environment variables and through open file descriptors.

• No daemon means state is only maintained in kernelspace.
• Allows in place replacement of the userspace infrastructure.
• No need to worry about a daemon dying and leaving the system with stale

automount triggers.
• Easy access to local namespace configuration for both file maps and network

services.

Cons:
• A lot of triggers occurring simultaneously would invoke many processes.
• A new facility that allows mounting operations using file descriptors of directories

is needed.

The alternative approach of using a usermode helper application to handle the mount
requests using a usermode helper application quickly becomes a viable option when one
realizes the benefits in both cross-namespace use and reliability. By moving any logic that

Page 9 of 34

was previously in the daemon out into a usermode application, we can enrich the
userspace/kernelspace protocol by giving the process context about where the triggering
action occurred. The use of the hotplug system is preferred in this implementation
because it is already a well-defined and accepted form of kernelspace to userspace
communication, though a separate but similar system could be used instead. /
sbin/hotplug is currently invoked with any number of arguments and any number of
environment variables. The goal is to have all trigger events be performed by the
userspace agent. Unfortunately, as we will discover, implementing expiry is a more
difficult task and must be done completely in the kernel.

Implementing automounting without having a single persistent daemon does also have
its own problems. It assumes that the system upon which the automounting is occurring
will have enough system resources to be able to handle a high automounting load. By
invoking a single process per automount action, we are consuming more resources than a
more traditional automount system would otherwise consume, and doing so in bursts. It
is the belief of the author that these extra resources are reasonable and will not grossly
affect the performance of the system. These assumptions should however be properly
qualified by performing relevant benchmarks and stress tests on a prototype
implementation.

The rest of this document describes a way to implement an automount system that uses a
usermode helper application to perform automount requests.

5 Proposed implementation
By removing the need for a persistent daemon and by adding mountpoint navigation
facilities we are able to address all of the shortcomings of the current Linux automount
system and fulfill all of the new requirements introduced by namespaces. The preferred
approach is to use a userspace helper application similar in nature to that used by the
hotplug subsystem. /sbin/hotplug already provides userspace defined agents for a
variety of systems and adding an automount agent is as simple as dropping a file in the /
etc/hotplug directory.

It must be noted that the hotplug action will run outside of any chroot(2) environments.
The current Linux automount implementations do not enforce any such restriction and
mixing automounting with chroot(2) leads to undefined behavior. Chroots are different
from namespaces because they share portions of the mount-table while differing
namespaces do not. Forcing the hotplug invocation to occur at the root of a namespace
enforces a single automount configuration per namespace. These semantics are similar to
those on other operating systems when automounting and chroots are used in
conjunction.

Registering an automount in a namespace will still be handled as a filesystem that will be
responsible for catching any triggering actions. In the current Linux autofs
implementations, the file descriptor for the writing end of an open pipe is passed as a
mount option and used for kernelspace to userspace communication. This makes the
kernel dependent on the pipe being open for communication with userspace. This causes

Page 10 of 34

an automount trigger to become catatonic when the reading end of the pipe is closed.
This communication artifact will be completely removed as part of the new protocol.

The daemon's process group is used in the existing automounter implementation to let
the filesystem determine if the process causing a trigger was a user process accessing
automounted resources or an automount daemon satisfying a prior request. In the design
outlined in this document, we avoid this issue altogether by allowing the servicing process
to bypass pathname walks. This is done by using file descriptors to describe target
locations of mounts.

In addition to describing target directories as file descriptors, mount operations that are
be capable of dealing directly with file descriptors are needed. Assuming new mount
facilities are in place, mount operations throughout this document are done in terms of
directory file descriptors. Rudimentary requirements are summarized in section 6.1.

Installing automount triggers in a system will be handled by mounting 'autofs'
filesystems at the appropriate locations. Mount options will be used to pass all the
context information needed later by the helper application when responding to triggering
actions. Most of these mount options will not be interpreted by the kernel itself. They
solely serve to pass contextual information to the helper application upon invocation. All
mount options that are interpreted by the kernel are noted as such.

5.1 Indirect Maps
The implementation of indirect maps will be done using an autofs filesystem similar to
that found in the current implementation. The main difference being that it will take a
list of mount options indicating that it is an indirect map as well as where the indirect
map entries can be found. For example, if the directory /home is to be an indirect
mountpoint using the map auto_home, the following mount command would be used:

mount –o maptype=indirect,mapname=auto_home \
–t autofs autofs /home

This would mount a filesystem of type autofs on the /home directory in the current
namespace. The 'maptype' mount option is used by the filesystem code and tells it to
use indirect map semantics3.

A simple example indirect map might have a single entry as follows:

mikew host:/export/home/mikew

Later on, if user mikew were to access his home directory /home/mikew, the system
hotplug handler would be invoked as root in the same namespace as the triggering
process:

/sbin/hotplug autofs mount

3 The difference between direct and indirect semantics is that a direct map requires a trigger to occur on traversal into the
autofs filesystem while an indirect map requires a trigger to occur traversal into each subdirectory. Direct maps are
described in more detail in the next section.

Page 11 of 34

This process is invoked in the same namespace as the triggering process because in
order for the triggering process to see the mounts, we require that all mounts occur in
the namespace of the triggering application. Also, the hotplug helper needs to access
the configuration of the triggering application's namespace. This configuration may
include the /etc directory, as well as any NIS and/or LDAP settings. Execution of the
hotplug system is currently hard-coded to run in init's context. Running /sbin/hotplug
in an arbitrary namespace differs from the existing hotplug functionality and should be
documented as such.4

When invoked, the following environment variables5 would be set:

MOUNTFD=0
MAPNAME=auto_home
MAPKEY=mikew

The hotplug agent would be responsible for performing the keyed lookup of $MAPKEY in
the map named $MAPNAME. It would then use the information in the entry to perform
the mount directly on the $MOUNTFD specified before returning a successful exit code.
For the simple indirect mount case, these three environment variables comprise all the
information that is required to properly perform the userspace actions. The $MOUNTFD
environment variable refers to the number of an open file descriptor of the directory
upon which to mount. The new mount system call will be used to allow for file
descriptor based mount operations. A file descriptor is preferred because it allows any
mount-related system calls to completely bypass any pathname resolution, thus
allowing the automounter to bypass any triggers directly. This simplifies any blocking
logic when a mount is occurring and eliminates the need for identifying the helper
application as performing the mount. This allows us to have automount triggers
handled by individual processes without any special reliance on their process group. It
also alleviates the need for persistence (again, due to the process group dependency).

Once an autofs filesystem is mounted, we no longer rely on its absolute path for
automount functionality. We effectively disassociate any map context information from
the actual location of the mount. This allows autofs mounts to be moved (mount(8) --
move option) or bound (mount(8) --bind option) without affecting automount
functionality. It also allows an administrator to install automount triggers without
modifying the /etc/auto_master file. For example, a map auto_ws could be manually
installed on directory /ws using a command such as:

mkdir /ws
mount –o maptype=indirect,mapname=auto_ws –t autofs autofs /ws

4 This semantic difference may justify using a different executable rather than /sbin/hotplug. Either way, hotplug is used for
the sake of discussion.

5 This document uses environment variables to pass values to the hotplug agent because it is easier to convey their relations
in pseudo-code terms. An actual implementation may choose to use command line arguments instead of environment
variables because '/sbin/hotplug autofs mount auto_home mikew 0' appears clearer. This is an implementation detail and
of little importance to the discussion at hand.

Page 12 of 34

This can be done without affecting any currently configured automount triggers.

5.1.1 Browsing
When an indirect map is installed on a directory, the resulting filesystem has no files
or directories within it. Subdirectories are created upon lookup. For instance, the
indirect mount on /home mentioned above would have no contents (other than the
usual '.' and '..' entries) until access to some subdirectory is performed.

The exception to this rule is when the map entry for /home contains the option
'browse':

/home auto_home -browse

In this case, a directory listing of /home should return a directory entry for each valid
key in the associated map. None of the entries should be automounted when this is
performed. Such actions are delayed until the directories are traversed. This is useful
from a user perspective, allowing a user to enumerate all entries that are available
without requiring any mounts to occur.

In order to implement this functionality we begin by adding a 'browse' mount option
to the autofs filesystem. This option switches behavior such that an indirect mount
filesystem will call the usermode helper with the following information upon the first
directory listing request (called by the ->readdir file operation on the root directory of
the filesystem). The usermode helper will be called with the 'browse' action and will
receive the following information on invocation:

MAPNAME=auto_home
OUTPUTFD=0

It is then the helper application's responsibility to retrieve the map and validate the
entries. It will then pass the keys of the map back to kernelspace by printing them
out to the file descriptor described by $OUTPUTFD. The kernel will take the values
written to $OUTPUTFD and will later used them to fill in requests to readdir. It will
need to create dummy directory entries so that lookups caused by calling stat(2) will
return valid results. Once again, the usermode helper application will run within the
same namespace as the triggering application so that namespace-local configuration
is used.

In order to maintain some form of coherency between changing maps, these dummy
directory entries will remain in place within the dcache so that the kernel doesn't
need to query the usermode helper as often. These entries will periodically timeout
and will be unhashed from the dcache. Any subsequent directory listing requires the
kernel refresh these entries with a new call to the usermode helper. The timeout will
be specified as another mount option ('browsetimeout=<seconds>') to the autofs
filesystem. The value will be passed back to the usermode helper when mounting as
the environment variable $BROWSETIMEOUT, so that the usermode helper may

Page 13 of 34

inherit these values for any nested maps. This environment variable will be specified
for all automount types, however, the browsetimeout mount option will only be used
by autofs mounts that have maptype=indirect and the browse options set. Other
configurations will silently ignore this value. A default value of 10 minutes (600
seconds) will be assumed.

Executing the usermode helper within the namespace of the triggering application
does have a problem when browsing is used. We are caching map keys in kernelspace
and can run into coherency problems when an autofs super_block is associated with
multiple namespaces which have differing automount maps in /etc. This kind of
situation may occur if a namespace is cloned and a new /etc directory with a different
auto_home map is mounted. The results from a readdir within the first namespace
may differ than the expected results from a readdir in the derived namespace. In
order to handle this, facilities need to be added that allow autofs super_blocks to be
cloned when cloning namespaces. Doing so ensures that an autofs super_block is
local to its namespace and the namespace-local configuration. Cloning of
super_blocks is described in section 6.3.

5.2 Direct Maps
Direct maps will be handled in a similar fashion to indirect maps. The main differences
are outlined as follows:

1. The mount option 'maptype' is now 'direct'. This tells the filesystem code to have
direct map semantics.

2. The map key for the direct mount entry is now passed as a new mount option called
'mapkey'. It will be the key to use when looking up the entry in the direct map. For
direct map entries, this will always be the same as the path upon which the trigger
is mounted; however, handling lazy mounts will also use this value as they will use
the same kind of automount trigger.

This is different from indirect maps where the map key is produced by a directory
lookup. Direct automounts have no such directory lookup and this contextual
information must be explicitly specified at mount time. The value of this mount option
is used as the $MAPKEY environment variable when the hotplug agent is invoked.

When a user process traverses into the root of an autofs filesystem that has
maptype=direct, a mount needs to be performed. The triggering process will block
while the hotplug userspace helper application is again invoked in the triggering
process's namespace. For example, assume that the auto_master file has the following
entry:

/- /etc/auto_direct

This tells the installing application (see below: The Userspace Utility) to iterate over
the /etc/auto_direct map and install a direct automount trigger for each of the entries
in the map. Assume the auto_direct file contains one entry:

Page 14 of 34

/usr/share hostname:/export/share

To install this entry, the following mount command would be used:

mount –o maptype=direct,mapname=/etc/auto_direct,mapkey=/usr/share \
 –t autofs autofs /usr/share

This hands the kernel all the information it needs to pass back to the hotplug agent in
order to let it perform the mount when necessary. When the agent is invoked, it is
again called with the 'mount' action and it is passed the same environment variables as
in the case of an indirect mount. In our example these are:

MOUNTFD=0
MAPNAME=/etc/auto_direct
MAPKEY=/usr/share
BROWSETIMEOUT=600

The helper application will need to go through and lookup the key6 ‘/usr/share’ in the
map ‘/etc/auto_direct’, parse the entry and finally mount the relevant filesystem on
the directory specified by the given file descriptor. This is exactly the same logic as
required for handling indirect maps.

5.3 Multimounts and Offsets

5.3.1 Explanation
A multimount is a map entry with an extended syntax that allows for a potentially
complex hierarchy of filesystems to be mounted on a given directory. Multimounts
may occur in both direct and indirect maps. They are most often used to enable the
automounting of one NFS share nested within another. For example, if we want to
automount hosta:/export/src on /usr/src and hostb:/export/linuxsrc on /
usr/src/linux, we would need to use a multimount. In this case the multimount entry
would be placed in a direct map and would look like the following:

/usr/src hosta:/export/src \
/linux hostb:/export/linuxsrc

In this example, the hosta:/export/src is to be mounted directly on the /usr/src
directory, and hostb:/export/linuxsrc. The mount information for /usr/src could
have also been written as:

/usr/src / hosta:/export/src \
/linux hostb:/export/linuxsrc

In this example, the ‘/’ of the multimount is explicit whereas in the first example it
was implied. Both path components ‘/’ and ‘/linux’ are called offsets. A multimount
is comprised of a set of offsets, each of which has a set of sources. In all the examples

6 Even though the value of the key looks like an absolute path, it should not be interpreted as such. Its sole purpose is to
index into the given map.

Page 15 of 34

in this document, only one source (such as an NFS share) is given for each offset.
There can very well be more than one source per offset. This technique of listing
multiple sources is used to specify fail-over redundancy. Handling NFS fail-over
redundancy is better implemented within the NFS subsystem and is not described in
this document.

By design, the multimount syntax is really just a superset of the regular map entry
syntax. For example, the following two map entries are equivalent:

Entry 1:
mikew hostc:/export/home/mikew

Entry 2:
mikew / hostc:/export/home/mikew

In the first entry, the ‘/’ offset is implied. So by design, all map entries may be
treated as a multimount. Most of which simply only have the ‘root offset’ defined.

One of the interesting aspects of multimounts is that entries do not have to have a
‘root offset’ defined at all. For instance, consider the situation where three users
exist on the system and their home directories all come from NFS servers. The
indirect map for /home may look something like this:

userA host:/export/home/userA
userB host:/export/home/userB
userC host:/export/home/userC

A new user is then added to the system who needs /home/userD/server1 to come
from one server, while /home/userD/server2 to be mounted from a second server.
There is no need to mount anything directly on /home/userD. This can be quickly
added to the above map as the following entry:

userD /server1 host1:/export/share1 \
/server2 host2:/export/share2

In this entry, there are two different offsets defined, namely ‘/server1’ and ‘/server2’
but there is no ‘root offset’ defined.

To complicate matters even more, offsets can also nest within each other:

/usr / hosta:/export/share/usr \
/src hostb:/export/src \
/src/linux hostc:/linuxsrc

The desired behavior is to ‘lazy-mount’ all these mounts. This means that only those
directories that are accessed are ever mounted. So, if only /usr is being accessed,
then only the share from hosta is mounted. Only when /usr/src is first accessed will

Page 16 of 34

the share from hostb be mounted. The same ‘laziness’ holds for /usr/src/linux from
hostc.

5.3.2 Implementation
An interesting aspect of implementing lazy mounts is that a multimount entry can be
broken down into several direct mounts. This is done by associating an offset value
with each direct mount trigger. This offset value is used at trigger time to identify
which portion of the mount has just triggered and which subsequent triggers need to
be installed. This offset value will be specified at autofs mount-time using a new
mount option, 'mapoffset', and will be passed down to the hotplug agent as a new
environment variable: $MAPOFFSET. The 'mapoffset' mount option will default to '/'
if it is not explicitly specified. This builds on the definitions explained above for both
direct and indirect maps.

With this in mind, we provide an example using the following direct multimount
entry from map auto_direct:

/usr / hosta:/export/share/usr \
/src hostb:/export/src \
/src/linux hostc:/linuxsrc

The mount command used to install the trigger would now look as follow (with
additions in bold):

mount –o maptype=direct,mapname=auto_direct,mapkey=/usr\
 ,mapoffset=/ -t autofs autofs /usr

Once this automount trigger has been installed, a first access to the directory /usr
will cause /sbin/hotplug to be invoked with the following environment variables:

MOUNTFD=0
MAPNAME=auto_direct
MAPKEY=/usr
BROWSETIMEOUT=600
MAPOFFSET=/

$MOUNTFD, $MAPNAME, $MAPKEY are still defined as in the explanations of both
direct and indirect map handling. The agent is to retrieve the entry with key ‘/usr’
from the map ‘auto_direct’ and parse it. The key addition is that it now uses the
$MAPOFFSET to figure out which part of the entry is being mounted. Once the
filesystem is mounted, the agent then mounts any other required child offsets on top
of the filesystem before exiting. So, in the case of traversing into the /usr directory,
the following actions are performed:

• lookup key ‘/usr’ in map ‘auto_direct’
• parse entry
• lookup offset ‘/’ in entry
• mkdir('/tmp/<unique_dir>')

Page 17 of 34

• mount 'hosta:/export/share/usr' '/tmp/<unique_dir>'
• mkdir(‘/tmp/<unique_dir>/src’)
• mount –o maptype=direct,mapname=auto_direct,mapkey=/usr\

,mapoffset=/src –t autofs 'autofs' './tmp/<unique_dir>/src'
• fchdir($MOUNTFD)
• mount --move '/tmp/<unique_dir>' '.'
• rmdir /tmp/<unique_dir>
• exit(EXIT_SUCCESS)

In this and following examples, we choose to use a temporary directory
'/tmp/<unique_dir>' as an intermediate root of our mount because we need to be
able reach into the newly mounted filesystem to install the child offsets. If we had
directly mounted the share from hosta on $MOUNTFD, we would not be able to
change the current working directory into the newly mounted filesystem without first
traversing back into the parent directory and then walking back across the trigger.
Using this intermediate directory allows us to bypass this completely. Once we have
finished performing all of the nested mounts we complete the transaction by moving
tree of mounts directly onto the target directory and returning a successful exit code.7

Comparing the initial autofs mount and the nested autofs mount, we notice that the
only difference between the trigger on /usr and the trigger on /usr/src is the
mapoffset mount option. This differentiator is enough to distinguish the two
automount triggers.

If a user were then to traverse into /usr/src, similar actions are performed by the
agent:

• lookup key ‘/usr’ in map ‘auto_direct’
• parse entry
• lookup offset ‘/src’ in entry
• mkdir('/tmp/<unique_dir>')
• mount 'hostb:/export/src' '/tmp/<unique_dir>'
• mkdir(‘/tmp/<unique_dir>/linux’)
• mount –o maptype=direct,mapname=auto_direct,mapkey=/usr\

,mapoffset=/src/linux –t autofs 'autofs' '/tmp/<unique_dir>/linux'
• fchdir($MOUNTFD)
• mount --move '/tmp/<unique_dir>' '.'
• rmdir('/tmp/<unique_dir>')
• exit(EXIT_SUCCESS)

Finally, if one walks into the /usr/src/linux directory:

• lookup ‘/usr’ in map ‘auto_direct’

7 A final implementation would preferably use what we refer to as 'floating mountpoints' as described in section 6.1,
'Mountpoint file descriptors' to achieve the same desired effect without requiring the building of mountpoints in a
temporary directory.

Page 18 of 34

• parse entry
• lookup offset ‘/src/linux’ in entry
• mkdir('/tmp/<unique_dir>')
• mount 'hostc:/linuxsrc' '/tmp/<unique_dir>'
• fchdir($MOUNTFD)
• mount --move '/tmp/<unique_dir>' '.'
• rmdir('/tmp/<unique_dir>')
• exit(EXIT_SUCCESS)

5.3.3 Multimounts without root offsets
The only remaining problem to be dealt with is multimounts that have no ‘root
offset’. These are a special case of regular multimounts and can be handled by still
installing the direct mount trigger on the root of the multimount. However, instead
of mounting a real filesystem upon trigger, a tmpfs filesystem is mounted before the
agent proceeds to install child trigger mounts. Following is the auto_home map
bound to /home from a previous example:

userA host:/export/home/userA
userB host:/export/home/userB
userC host:/export/home/userC
userD /server1 host1:/export/share1 \

/server2 host2:/export/share2

We still install the indirect trigger on /home as before:

mount –o maptype=indirect,mapname=auto_home –t autofs autofs /home

When a process traverses into the /home/userD directory, the following environment
variables are passed to the /sbin/hotplug agent:

MOUNTFD=0
MAPNAME=auto_home
MAPKEY=userD
MAPOFFSET=/

The agent takes this information and performs the following actions:

• lookup ‘userD’ in map ‘auto_home’
• parse entry
• lookup offset ‘/’ in entry
• mkdir('/tmp/<unique_dir>')
• // no root offset found! Install dummy filesystem:
• mount –t tmpfs 'tmpfs' '/tmp/<unique_dir>'

• // handle child offsets
• mkdir(/tmp/<unique_dir>/server1)
• mount –o maptype=indirect,mapname=auto_home,\

mapkey=userD,mapoffset=/server1 –t autofs 'autofs'
'/tmp/<unique_dir>/server1'

Page 19 of 34

• mkdir(/tmp/<unique_dir>/server2)
• mount –o maptype=indirect,mapname=auto_home,\

mapkey=userD,mapoffset=/server2 –t autofs 'autofs'
'/tmp/<unique_dir>/server2'

• // remount the tmpfs filesystem read-only because it is just a dummy filesystem.
• mount -o remount,ro '/tmp/<unique_dir>'

• // move the tree of mounts onto the target directory
• fchdir($MOUNTFD)
• mount --move '/tmp/<unique_dir>' '.'
• rmdir('/tmp/<unique_dir>')
• exit(EXIT_SUCCESS)

We use a tmpfs filesystem on /home/userD because we need to be able to create
directories and we would like to have these directories exist on a filesystem that is
expirable. Traditionally, the directory of the root offset for entries with no defined
root offset is immutable. It may not be changed by any userspace program. We use
the simple approach of remounting the filesystem read-only once we have created the
directories to simulate this effect.

The two nested direct mount triggers act as they normally would.

5.4 Expiry
Handling expiry of mounts is difficult to get right. Several different aspects need to be
considered before being able to properly perform expiry.

In the existing Linux autofs implementations, the system works such that the userspace
daemon will ask the autofs filesystem code to check to see if any of the automounted
filesystems can expire (this is done by calling an ioctl on the base directory of the autofs
filesystem). The autofs filesystem will then acquire the necessary locks and walk each
of the currently mounted filesystems to see if anybody is using them. If the kernel code
determines that a mount is ready to be expired, it sends the path back to the daemon.
The daemon in turn unmounts it from userspace. This method of expiry has several
problems:

• The autofs filesystem really should know as little about VFS internal structures as
possible. In this case, the filesystem code is charged with walking across
mountpoints and manually counting reference counts. This task is much better left
to the VFS internals.

• Unmounting the filesystem from userspace is racy, as any program can begin using a
mount between the time the daemon has received a path to expire and the time it
actually makes the umount(2) system call. This sequence of events would make the
expiry fail. Even worse, manually unmounting several mounts in a multimount can
possibly lead to an expiry that fails to unmount after some of the mounts have
already been unmounted, leaving the multimount in an inconsistent state.

• Having userspace initiate mount expiry requires a userspace application to
periodically make the query the kernel. This is done using a daemon, but as we have

Page 20 of 34

already discovered, automounting with a daemon does not work well when you are
working in a multi-namespace environment.

These points suggest that the kernel's VFS sub-system should be charged with handling
expiry. Some of the benefits of having it perform this functionality over other ad-hoc
solutions are:

• All data structure specifics (like navigation and lock semantics) are maintained within
the same component of the kernel. This improves maintainability and sustainability
of the kernel proper and of individual filesystem implementations.

• Other filesystems would like to have expiry functionality in the VFS sub-system.
Providing this service at the VFS layer would reduce duplicated efforts between
filesystems to support this functionality. Similar to this is the way the VFS layer
provides read-only functionality for all filesystems from a higher level of abstraction.

The following questions must be answered before a complete expiry solution is
designed:

• How will the kernel determine the expiry timeout value? In other words, how does it
know how much time must pass for an unused mountpoint before it expires?

We will need to pass timeout values in from userspace. The simplest method to
pass this information to the kernel is to pass it to the VFS layer as a mount option.
This option is tentatively named 'vfsexpire' and will accept a timeout value given
in seconds8.

As described above, we may be installing multiple mounts upon each trigger. This
tree of mounts will need to expire together as an atomic unit. We will need to
register this block of mounts to some expiry system. This will be done by
performing a remount on the base automounted filesystem after any nested
offset mounts have been installed

• How will the VFS layer verify that a filesystem is inactive?

The VFS layer can atomically peek into the mountpoint structures (struct
vfsmount) and look at the given reference counts to determine whether a
filesystem is currently active or not.

Reference counting alone does not solve the issue of having to be able to atomically
unmount several mountpoints. This is evident when lazy-mounting is considered. We
would like to expire a base mountpoint that may optionally have nested autofs mounts
ready to catch a trigger. These nested mounts increase the reference count on the base
mount, and thus need to be considered as counting towards the total reference count.

8 Unfortunately, the current mount system calls do not allow arbitrary information to be passed directly to the VFS layer if
they cannot be represented as a boolean flag. A new set of system calls and interface semantics will need to be thought
about and implemented for this mount option to be available.

Page 21 of 34

These nested mounts in turn must recursively also be inactive for the base mount to
expire.

The proposed semantics are as follows:

• A mount may be made without the vfsexpire mount option. In this case, the value
defaults to 0, specifying that this mountpoint will never expire.

• A mount may be made with the vfsexpire=n mount option. This specifies that the
kernel may detach this mount at some time after at least n seconds have passed with
the mount inactive.

• An existing mountpoint may be remounted with vfsexpire=0. This signifies that if this
mountpoint was to previously set to expire, it no longer will.

• An existing mountpoint may be remounted with vfsexpire=n, where n is non-zero.
This signifies that this mountpoint together with any mountpoints currently
underneath it will expire atomically. That is to say, if all of the said mounts are
inactive (no one is using any of them, and nothing else is later mounted within
them), only then will the entire tree of mounts expire together. This is an all or
nothing expiry, where a hierarchy of mountpoints expires as a single unit.

We require that a tree of mounts be able to expire atomically together to ensure that
we do not wind up with a partial expiry. A partial expiry would break our ability to lazy
mount as some of the nested autofs filesystems would no longer be mounted. Such an
arrangement would remain inconsistent until the root of the expiry is unmounted.

The unmount itself will be performed within the kernel. Doing so assures that the
unmount occurred while nobody was accessing the filesystem. Further details on how
native expiry support may be implemented are described below in section 6.2.

5.5 Handling Changing Maps

In a network that uses automounting in abundance, it is expected that maps will
change fairly often. It is desirable that systems using the new automounting
architecture will stay coherent with the maps provided by the nameservices on the
network.

Before designing a strategy to handle changing maps, it is important to first understand
what types of changes can occur. Table 1 describes a cross-section of map entry types
and of the types of changes that may occur. This cross-section view allows us to identify
how map changes are propagated to a running configuration given the automount
system described thus far.

Page 22 of 34

Entry Modified Entry Removed Entry Added

Direct Entry (in direct
map included from
auto_master)

Updated on Expiry Requires Removal Requires Addition

Indirect Map (as listed
in auto_master)

Requires updating
associated context

Requires Removal Requires Addition

Indirect Entry Updated on Expiry Updated on Expiry Works

Table 1Strategies for Changing Maps

Most of the changes that may occur get propagated to a running system the next time a
trigger is performed. This means that any updates to maps for an already mounted
system becomes active after an expiry occurs. Each triggering action causes a new map
lookup to occur. These map lookups will cause the trigger to receive any new modified
entries.

5.5.1 Base Triggers

There are however certain conditions where a running system will not be completely
in sync with changing maps. These changes involve the modification of the master
map as well as any direct maps. Entries in these maps will need to be reflected on the
running system by running a utility program that will synchronize the map contents
against the filesystem layout on a running machine. This will involve adding or
removing direct and indirect mountpoints as well as refreshing the context associated
with each indirect mountpoint.

A utility program will need to create a delta between the running system and the
master map and direct maps involved. This information is available from the proc
filesystem (/proc/self/mounts). The program will then be able to identify any entries
that would have come from the master or direct maps (by finding the autofs
filesystem that are mounted on unique paths prefixes) and add and remove
filesystems from the running namespace to bring the mount table in line with the
maps.

We must also consider the case where indirect entries from the master map and direct
entries from direct maps are installed and the maps subsequently change. In order to
handle updating the context associated with the indirect trigger filesystem
atomically, a remount is performed on the autofs filesystem with the new context
passed as mount options. A simple approach would allow the remount to happen on
a pathname because the following assumptions hold:

• The filesystem is an indirect filesystem, which will never be covered by another
filesystem. If it is, then it is not updated.

Page 23 of 34

• Because it is an indirect filesystem, remounting it will not cause any other
filesystems to be incorrectly triggered (because the base directory of the filesystem
is immediately available).

However, there remains the issue of a direct map entry that changes from one map to
another, or is removed from the direct map set. Access to a direct map mount is not
available when it is covered by another filesystem, and accessing it directly by
pathname would in turn cause the direct mount to trigger and mount a different
filesystem. Because of these problems, we need to define some method that allows a
direct mount to be accessible in a manner that would not trigger a new mount, nor
follow into any overlaying mounts. The proposed solution is to adopt a new interface
that allows user space to navigate mountpoints on a given system. The goal is to use
this navigation in conjunction with mount operations (such as unmounting and re-
mounting with new options) to reconfigure an automount system and bring it up-to-
date with all of the changing maps. Such a system for navigating mountpoints is
described below in section 6.1.

5.5.2 Forcing Expiry to Occur
Given a new interface that allows the navigation of mountpoints within a namespace,
we now have the ability to force expiry completely from userspace. Forcing expiry to
occur becomes as trivial as writing a simple utility that gets the mountpoint file
descriptor for the root filesystem and traverses across all mountpoints. Whenever
this utility would see a mountpoint of type 'autofs', we would walk amongst its
immediate child mountpoints and performing a lazy unmount9 on each child
mountpoint. Similarly, we can also remove all autofs filesystems from a given
namespace by lazy unmounting them as well.

5.6 The Userspace Utility

The userspace utility program to be used in administrating an automounted system
would preferably be called 'automount'. It would fulfill the following functions:

automount install [mastermapname]

This action would go through the master map (overridden by the mastermapname) and
would install triggers within the running namespace.10

automount refresh

This action would go through the current namespace and update the base autofs
filesystems as described in the section titled "Base Triggers". It would not perform a
lazy unmount of all the mounted filesystems.

9 See umount(8), 'Lazy unmount'.
10 The master map (with default value '/etc/auto_master') will need to be accessible from the calling namespace, as would any

other file map references.

Page 24 of 34

automount detachall

This action would perform a lazy unmount on all the automounted filesystems.

automount uninstall

This action would remove all autofs triggers from the current namespace.

6 New Facilities

The following sub-sections describe in high-level detail the new facilities that are needed
in order to fully support a robust automount system. The descriptions that follow are in
places deliberately over-simplified as several of their design aspects are open for much
discussion and debate.

It is hoped that the ideas below are well entertained. It is the intent of the author to
further investigate details for each concept introduced and to propose more elaborate
requests for comments to the community. Suggestions and comments are most
welcomed for the sections that follow.

6.1 Mountpoint file descriptors

Mountpoint file descriptors are intended to describe mountpoints as first-class citizens
within the Linux environment. By being able to describe mountpoints using file
descriptors, we allow programmers and system administrators to continue using the
tools they are used to, while at the same time enriching the semantics allowed for
mountpoints. Some of the desired benefits of describing mountpoints as file
descriptors are as follows:

• We wish to be able to use common APIs such as read(2) and write(2) to communicate
with a mountpoint. This would be useful for communicating mount options specific
to the filesystem, as well as with the VFS layer directly.

• We wish to be able to enumerate mountpoints somehow such that they may be
modified without causing any path traversals to occur. This has the added benefit
that we may access mountpoint configurations for mountpoints that are covered by
other filesystems.

These mountpoint descriptors will most likely be accessible via a new mount system
call, mount2. Mount2 will multiplex the following actions:

• 'Mount'. Take a mountpoint file descriptor and mount it on a directory, specified by
a second file descriptor.

• 'Unmount'. Given a mountpoint file descriptor, attempt to unmount the filesystem if
it isn't busy.

Page 25 of 34

• 'LazyUnmount'. Given a mountpoint file descriptor, detach the filesystem from its
namespace. Perform a lazy cleanup of resources when the filesystem is no longer in
use.

• 'ForcedUnmount'. Given a mountpoint file descriptor, force an unmount to occur.
Forcing unmounts is useful for filesystems such as hung NFS shares.

• 'Bind'. Given a source directory file descriptor, create a new mountpoint file
descriptor that can later be mounted on any given directory file descriptor using the
Mount sub-command.

• 'GetMfd'. Given a directory file descriptor, this command will return the directory's
associated mountpoint file descriptor if the directory is the base of a mountpoint.

• 'GetDirFd'. Given a mountpoint file descriptor, this command will return an open
directory as a file descriptor. This directory file descriptor will represent the base of
the mountpoint as described by the mountpoint file descriptor.

• 'GetFirstChild/GetNextChild'. Facilities will also be put in place to navigate the
children mountpoint file descriptors of a given mountpoint file descriptor.

Reading from a mountpoint file descriptor will result in a summary of the underlying
filesystem, such as its type, the options it is using and its absolute path within the
current namespace.

When a mountpoint file descriptor is unmounted using either the Unmount or
LazyUnmount commands, the mountpoint it represents would remain valid. Instead of
being directly associated within a namespace, the mountpoint is considered 'floating'.
A floating mountpoint can be re-associated with a namespace by performing the Mount
command. One of the benefits of floating mountpoints is that one can mount a
filesystem without associating it with a namespace. The floating mountpoint can then
be navigated by first acquiring the base directory of the mountpoint using the GetDirFd
command and then changing the current working directory to it using fchdir(2).

Because of the way support for forcing unmounts is implemented, the ForcedUnmount
command will invalidate the given mountpoint file descriptor upon successful
completion. Any attempts to access the base directory on a forcefully unmounted
filesystem will result in an error.

Together, these commands allow one to implement all of the mount operations with
which we are familiar. For example, assuming a filesystem is mounted at /from, a
move operation can be achieved in the following steps:

• sourcefd = open(“/from”)
• targetfd = open(“/to”)
• mfd = mount2(GetMfd, sourcefd)
• mount2(LazyUnmount, mfd)
• mount2(Mount, mfd, targetfd)

This example takes advantage of the fact that the underlying filesystem is still valid
when it is lazily unmounted. We effectively disassociate the filesystem with the current

Page 26 of 34

namespace (using LazyUnmount) and then re-associate it back with the namespace by
calling Mount. Similarly, a recursive bind operation may be done by recursively visiting
each mountpoint and creating new floating mountpoints using the Bind operation.
These new mountpoints may be stitched together in userspace using the Mount
operation along with directory file descriptors obtained using the GetDirfd operation
before finally associating the new tree of mountpoints in the namespace using the
Mount operation.

6.2 Native Expiry Support

David Howell from Red Hat has already implemented an expiry system that may
eventually make it into the mainline kernel. His implementation is used to add
automount functionality to the AFS filesystem. Specifically, the AFS filesystem
implementation catches dangling symlinks whose symlink target is formatted to contain
all the information needed in order to mount an AFS cell. His expiry implementation
extends the VFS API such that one can construct a mountpoint and have it grafted into
the current namespace's tree, while simultaneously linking the mountpoint into an
expiry run list. This list is provided by the filesystem implementation. Linking into an
expiry run list is handled by the VFS layer so that the filesystem itself need not worry
about the locking semantics involved.

The experimental AFS automount patch periodically calls a new VFS function,
mark_mounts_for_expiry. This function will traverse a list of vfsmounts and determine
which are not in use and marks them appropriately. These markings state that the
mountpoint has been inactive since that last mark_mounts_for_expiry run. If a later
mark_mounts_for_expiry run comes across a vfsmount that already has a marking and
is still inactive, the mountpoint is scheduled to be detached from the namespace. These
markings are cleared on all calls to mntput, so any user which uses the mount between
calls to mark_mounts_for_expiry will either put the mountpoint in an active state, or
transition back to an inactive state but also clear the marking.

The mark_mounts_for_expiry patch has a few limitations that will need to be dealt with
in order to completely integrate it with the VFS sub-system:

• The VFS layer currently delegates the run of mark_mounts_for_expiry to each
individual filesystem. The delegation forces duplicate code between filesystems that
wish to support mountpoint expiry. It also keeps a user from marking arbitrary
mounts as being expirable. Each filesystem type must hold onto a list_head for their
own expiry list, of which the filesystem code is not allowed to traverse without
acquiring VFS-owned locks. These lists should be consolidated into the VFS layer
directly. The VFS layer would in turn periodically call mark_mounts_for_expiry.

• Using a boolean marking forces the expiry timeout to be the within one and two
times the period between calls to mark_mounts_for_expiry. This is fine, however it
neglects the possibility of having per-mountpoint configurable timeouts. Greater
configurability and granularity can be achieved by having each vfsmount store a

Page 27 of 34

timeout period value. Instead of using a boolean marking, a counter would be used
that would count up to the timeout value before expiring.

• In the mark_mounts_for_expiry patch, expiry is specified by a call to do_add_mount.
This call now takes an additional argument, a list_head used to enumerate all
mountpoints that should expire. By having the VFS layer handle expiry natively, we
would no longer need to have this API addition. Instead, the VFS layer would
intercept the vfsexpire mount option and will update its mount table and internal
expiry run list to reflect these changes.

The proposed solution to this would see child mountpoints recursively associated as
being part of an expiry when the parent mountpoint is linked into the expiry list. These
associations will need to be cleared when any mountpoint manipulation occurs on the
child mountpoints. They will be verified when checking the active state of the parent
mountpoint to determine whether a child mountpoint is part of the parent
mountpoint's expiry. The consistency of these associations will need to be managed by
the VFS layer, which will simply remove any associations when a mountpoint is modified
(possibly via a bind or a mountpoint move operation). The exception to this occurs
when a namespace is cloned. In this case, any markings will need to be updated to
remain consistent within the new namespace.

The following sequence of events and descriptions attempts to describe the semantics
described above by example:

mount -o vfsexpire=10 /dev/hda1 /usr

The mountpoint at /usr is set to expire after ten seconds.

mount /dev/hda2 /usr/src

The mountpoint at /usr cannot expire because it is held busy by the filesystem mounted
at /usr/src.

mount -o remount,vfsexpire=20 /usr

The mountpoint at /usr will now expire along with /usr/src after 20 seconds of both
mountpoints being inactive. They will expire together atomically; e.g. Under no
circumstances will /usr/src be unmounted by an expiry run without also removing the
mountpoint at /usr.

mount /dev/hda3 /usr/local

The mountpoint at /usr cannot expire because it now has a new child mountpoint that
is not associated with the expiry.

mount --move /usr/local /local

Page 28 of 34

The mountpoint at /usr can now expire along with /usr/src after 20 seconds because it
no longer has any child mountpoints that aren't associated with the expiry.

mount --move /usr/src /src

The mountpoint that was at /usr/src will no longer expire. Its association with the
expiry of /usr is lost. The mountpoint at /usr will continue to expire after 20 seconds of
inactivity.

mount --move /src /usr/src

The mountpoint at /usr will not expire because it is held busy by the mountpoint at /
usr/src.

mount -o remount,vfsexpire=0 /usr

The mountpoint has its expiry disabled.

6.3 Cloning super_block

When a namespace is cloned, all the super_blocks for each of the currently mounted
filesystems are shared between both old and new namespaces. Because filesystem-
specific mount options are stored at the super_block layer, this creates the problem that
changes to a mounted filesystem will affect all occurrences of the associated
super_block. Sharing a super_block across namespaces opens the door to cross
namespace tampering and contradicts our goal of keeping namespace configurations as
isolated as possible.

The implications are less apparent with other types of filesystems. For example, given
that an ext3 filesystem may be mounted in several places, it is a fundamental
requirement that there only exists one running configuration of the ext3 filesystem at a
given time, i.e. you wouldn't want to mount the filesystem in one place with
data=journal and in another location with data=ordered (two contradicting options).
This running configuration is represented as a single super_block, and the VFS layer
ensures that only one super_block exists for any block device-backed filesystem. There
is no such requirement for pseudo-device filesystems (those which do not have block
devices backing them).

In order to allow namespaces to be cloned without letting changes within one
namespace effect the other, we must develop a way for mount options to be kept
distinct across the clone. Several alternatives are possible, some more immediate than
others:

1) Do nothing. Allow cloned namespaces to share automount configuration within
shared super_blocks.

Page 29 of 34

Pros:
• No special work needs to be done

Cons:
• Can never be sure if a super_block is associated with a different namespace.

This is a breach of isolation between namespaces.
• It becomes impossible to clone a namespace and update the automount

configuration without affecting other namespaces save unmounting all autofs
filesystem occurrences and replacing them with new instances.

Unfortunately, this option is not very viable as it does not achieve our goal of isolating
automount configuration across cloned namespaces. A more complex method needs to
be devised:

2) Allow a super_block to clone itself for the purposes of namespace cloning. This is
preferably implemented as a new optional callback in super_operations. When
called, the callback will generate a new super_block instance with the same
configuration as the input instance. All directory entries (dentries) and inodes of the
input super_block will also need to be duplicated so that filesystems mounted on top
of the cloned filesystem may be stitched into the new namespace.

Pros
• Allows completely distinct automount triggers across cloned-namespaces.
• Filesystems that are mounted within a cloned super_block will still be

accessible within the new namespace.

Cons
• Duplicating all dentries and inodes for a given super_block in a consistent

manner is not feasible given the locking and coherency semantics involved.

Unfortunately, the second option does not lend itself to dealing with cloning any sub-
mountpoints easily. Mountpoints are internally dependent on dentries, which in turn
are dependent on super_blocks. In order to clone a complete namespace while allowing
the cloning of super_blocks as discussed in the second option above, we would have to
not only clone the super_block, but also recreate any dentries and inodes associated
with the super_block. This is a very difficult task to accomplish given the locking and
coherency semantics involved.

This method is the only possible way conceived of guaranteeing the isolation of
automount trigger configurations across cloned namespaces. The capability to clone
super_blocks is needed and further investigation as to how this can be accomplished is
required.

6.3.1 The --bind problem

Page 30 of 34

When a mountpoint is bound (using mount(8)'s --bind option), the system is left in a
state where two mountpoints exist that both use the same super_block. This leads to
questionable behavior. Should remount options on one mountpoint affect the other?
These semantics are currently being worked out, especially with the soon-to-be
introduced per-mountpoint read-only mount option.

For the sake of simplicity, we may choose not to clone super_blocks for mountpoints
when the mount bind operation occurs. However, this leads to strange semantics
when mixed with the cloning of namespaces. For example, consider an autofs
filesystem located at /foo. Super_blocks are shared on bind operations, so,

mount --bind /foo /bar

would result in two mountpoints sharing the same super_block. This allows any
configuration changes performed on /foo to also affect /bar.

Assuming we naïvely clone super_blocks for autofs filesystems and a new namespace
is then created, each of the mountpoints mentioned would each get its own
super_block. With independent super_blocks for each mountpoint, changes to /foo
would no longer affect the autofs mountpoint on /bar. The semantic of blindly
cloning super_blocks for each mountpoint regardless of the number of mountpoints
using the super_block results in a derived namespace that does not behave in exactly
the same way as its parent namespace.

For these reasons, we extend the semantic description of cloning super_blocks when
cloning namespaces. Instead of simply cloning the super_blocks that require it as we
traverse the namespace, we keep a list of the cloned super_block pairs and re-use the
newly cloned super_blocks for each mountpoint duplicated that referred to the
ancestor super_block. This solves the --bind problem by ensuring that any
mountpoints that referred to a single super_block will continue referring to a single
super_block within the new namespace and that the two namespaces will continue to
behave alike.

7 Scalability

Moving from the customary practice of using a daemon to using a usermode helper to
perform automounting brings up the question about scalability. In this design, a new
process is created every time a trigger occurs. This may lead to many small processes
being created that have a very short lifespan. As such, the problem of having a lot of
process overhead becomes a possible issue. The memory footprint for running a lot of
small processes also becomes an issue.

The argument against these claims is that the process overhead in Linux is comparatively
small, and is far outweighed by any network communication that will be occurring as part
of the automount process. The time spent communicating with networked nameservices

Page 31 of 34

(such as NIS or LDAP),latency spent in communicating with networked nameservices (such
as NIS or LDAP) as well as network communication with a remote NFS server is many
magnitudes larger than the overhead introduced by spawning a new process.

There does, however, remain the possibility of a denial of service attack by a user
attempting to simultaneously trigger all of the automount triggers in a large system.
Appropriate countermeasures to such activities can be put in place, such as defining a
maximum possible number of simultaneous automounts triggered by a given user. This
kind of issue remains an area of research and suggestions are welcome in dealing with
this problem.

8 Conclusion
Linux automounting has always lacked full support for Solaris-style automount maps.
This has long been the case due to technical limitations imposed by design as well as to
lack of interest and time by the primary developers. It is our goal to make Linux able to
support Solaris-style automounter maps completely and reliably. In order to achieve this
goal, we need to redesign the way automounting works.

Namespaces provide a new and exciting way of dealing with security concerns, however,
they make the problem space of automounting much more complex. By using a usermode
helper in lieu of a daemon, we gain namespace accessibility. Namespace-local automount
configuration and mount operations are at our disposal. We also gain the benefit of no
longer having to maintain state in userspace, a task which is vulnerable to subtle changes
in semanticsiii.

We also take the opportunity to define the semantics of automounting across cloned
namespaces. These semantics require the ability to clone super_blocks in order to isolate
automount configurations across namespaces. This appears at first to be an ugly hack,
but in reality it makes sense considering the options that are available.

Another automounting task that has always caused problems in the past is the expiry of
mountpoints. By moving mountpoint expiry into the VFS layer where it belongs, we
eliminate any possible races. Expiring mountpoints also becomes available to anyone
wishing to do so, whether it be part of the automount process or not.

Related to expiry is the ability for userspace to reliably navigate mountpoints so that
covered mountpoints may be accessed and remounted. We've outlined a possible
solution that will accommodate this need. The semantics involved are not yet completely
defined and require insight from the primary consumers of such an interface.

It is hoped that the design outlined in this document is thorough enough to spark
discussion as to how automounting should be implemented in the future. By
implementing the core kernel facilities listed above, it is felt that a complete automount
solution may be developed. This implementation would be completely capable of

Page 32 of 34

handling Solaris-style automount maps and would continue to work reliably in a multi-
namespace environment.

Page 33 of 34

i “The Use of Name Spaces in Plan 9” Rob Pike et al. “http://plan9.bell-labs.com/sys/doc/names.html”
ii “A Uniform Name Service for Spring's UNIX Environment” Michael N. Nelson / Sanjay R. Radia

http://www.usenix.org/publications/library/proceedings/sf94/full_papers/nelson.ps
iii “"simultaneous" mounts causing weird behavior” http://linux.kernel.org/pipermail/autofs/2003-

November/000367.html

