=ed) Sun Cobalt

The Qube 3 Software Architecture Developer’s
Guide

Version 1.0

Sun Microsystems, Inc., Sun Cobalt Server Appliances.

i Contents

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights
reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described
in this document. In particular, and without limitation, these intellectual property rights may include one or more of the
U.S. patents listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in
the U.S. and other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying,
distribution and decompilation. No part of the product or of this document may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun Logo, Java, Java Script, Sun Cobalt, Sun Cobalt Qube, Sun Cobalt RaQ, and the Sun
Cobalt Logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd.

For a complete listing of the software used within the Sun Cobalt Qube 3 server appliance, and the terms under which
it can be distributed, refer to the Sun Cobalt Web site at http://www.cobalt.com. The Sun Cobalt Qube 3 server
appliance includes software developed by the Apache Group for use in the Apache HTTP server project (http://
www.apache.org/). The Sun Cobalt Qube 3 server appliance also includes Majordomo, a package for managing
Internet mailing lists. The latest version of Majordomo can be obtained from ftp://ftp.greatcircle.com/pub/majordomo/.

Sendmail is a trademark of Sendmail, Inc.
Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900 Etats-Unis. Tous
droits réservés.

Sun Microsystems, Inc. détient des droits de propriété intellectuelle sur la technologie réunie dans le produit qui est
décrit par ce document. Ces droits de propriété intellectuelle peuvent s'appliquer en particulier, sans toutefois s'y
limiter, & un ou plusieurs des brevet américains répertoriés a I'adresse http://www.sun.com/patents et a un ou
plusieurs brevets supplémentaires ou brevets en instance aux Etats-Unis et dans d’autres pays.

Contents iii

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la
copie, la distribution et la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous
aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de
licence, s'ily en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractéres, est protégé par un
copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, JavaScript, Sun Cobalt, Sun Cobalt Qube, Sun Cobalt RaQ, et le logo Sun
Cobalt sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans
d’autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company,
Ltd.

Pour une liste comple’te du logiciel utilise' dans le mini-serveur Sun Cobalt Qube 3, et les conditions dans lesquelles il
peut e”tre distribue’, voir le site Web de Sun Cobalt a” http://www.cobalt.com. Le mini-serveur Sun Cobalt Qube 3
contient du logiciel de'veloppe' par le Groupe Apache pour le projet de serveur Apache HTTP (http://www.apache.org/
). Le mini-serveur Sun Cobalt Qube 3 contient e'galement le logiciel Majordomo pour la gestion de listes d'adresses
Internet. La dernie're version de Majordo peut e”tre obtenue de ftp:/ftp.greatcircle.com/pub/majordomo/.

SendMail est une marque déposée de SendMail, Inc.

LA DOCUMENTATION EST FOURNIE “EN LETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET
GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR
LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE
MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A LABSENCE DE CONTREFACON.

iv Contents
Acknowledgements Xiv
Chapter 1 Introducing The Sun CobaltTM Qube 3 Software Architecture
INtroduction 11
Audience 1-3
About this BooK. 1-3
Related Documents e 1-4
Document Roadmap.o i i 1-4
Conventions Used inthisGuide 1-5
Typographical Conventions. 1-5
Programmatic Conventionst 1-5
Terminology o 1-6
Chapter 2 About The Qube 3 Software Architecture
The Appliance Concept. e e 2-2
The User Interface Defines the Appliance. 2-3
Navigating Around. e e 2-3
Building Pages. 2-3
Ideas Behind UIFC. i 2-4
Userinterfacewith Style 2-5
Built-in Internationalization. 2-5
Abstraction of the SystemintoObjects 2-5
Storingthe Objects. 2-6
Manipulating the Objects. 2—7
Extendingthe Objects i 2-8
WatchingforChanges 2-9
Actuatingthe Changes. i, 2-10
Modularity — Doing YourOwn Thing. 2-10
What CCEISNOt.o e e 2-10
Chapter 3 User Interface
How the Navigation System Works. 3-2
XML Elements. 3-2
Navigation Manager. 3-4
Adding a New Navigation Node 3-6
UsingUniqgue Names i 3-7
Building Pages. 3-7

A Further Example. 3-8

Contents \Y
The User Interface Style 3-10
How StylesWork. 3-10
Changing the User Interface Style 3-10
Making Other Style Changes. 3-11
Chapter 4 Using i18n and 110n in The Qube 3 Software Architecture
ILBN: AWOIId TOUN .« .ot e e 4-1
Terminology. oo e 4-1
How Internationalization Works 4-2
Using Domains, Tags,and Locales. 4-3
DOMaINS . . . 4-3
TAGS - 4-3
Locale. 4-4
How Strings Are Added tothe System 4-4
Using Interpolation 4-5
Interpolation Rules. 4-5
Theil8niInterface 4-6
The i18n C Language Interface 4-7
Theil8n PHP Interface 4-10
Object Methods 4-11
Internationalization Example. i 4-15
Chapter 5 Introducing the Cobalt Configuration Engine
The Cobalt Configuration Engine (CCE) 5-2
BasiC CONCEPLS. . vttt 5-2
How Data Flows ThroughCCE. 5-3
The CCEDaemon (CCEd) ...t 5-4
CCEd Command-Line Parameters., 5-5
The Cobalt System Configuration Protocol (CSCP)................. 5-5
The Cobalt Object Database (CODB) 5-6
SCNEMAS . . . e 5-6
How to Read XML Syntax Descriptions. 5-6
Whitespace. e 5-6
SYmMbOIS . . e 5-7
Elementsand Content. i 5-7
Attributes 5-7
COMMENTS. . . e 5-8
Escape SeqUENCES. 5-8

Sample XML e 5-8

Vi

Contents
Schema SyntaX. 5-9
Syntax: SCHEMA 5-9
Syntax: CLASS 5-10
Syntax: PROPERTY 5-10
Syntax: TYPEDEF. 5-12
Sample Schema Definition File. 5-12
Handler Registration e 5-13
EVeNtS. . . 5-14
Handlers. 5-15
StAgES . . oo 5-15
File Namingo 5-15
Sample Handler Registration File 5-16
CCE LIbraries 5-16
o 5-16
Dependenciesand Headers. 5-17
Datatypes 5-17
FUNCLIONS . . . e 5-19
Perl . . 5-31
Module 5-31
Creatinga New Object. 5-31
Methods 5-32
Public Methods for CCEClient (PHP). 5-40
Chapter 6 Making Qube 3 Software Architecture-Aware Applications
Making Qube 3 Software Architecture-Aware Applications 6-1
About the Application Module 6-2
Naming Your Application Module 6-3
Building a New Service Module 6-3
Making your Application into a Package 6-4
Introducing Slush Barn, a “Real-World” Application. 6-7
How to Install your Package Fileonthe Qube 3. 6-9
Installation Process 6-11
Choices for the Installation Process. 6-12
Package Structure 6-12
Package Dependency Model 6-17
Information for Installing Stand-Alone Packages 6-17
Software Update Server. 6-20
Development Details

Contents Vii
Appendix A User Interface Foundation Classes
HTML Generationt e e A-1
Error Checking. A-1
Reusable Code e A-2
Common P Pitfalls e A-2
AdABULION A-3
BackButton A-3
Bar . .. e A-4
BUttON . .. A-5
CancelBUutton A-8
CompositeFormField. A-9
CountryName. A-11
DetailButton. A-11
DomainName. e A-12
DomainNameList. e A-12
EmailAddress. e A-12
EmailAddressList. e A-13
FileUpLoad e A-14
Form. . e e A-15
FormField e A-18
FormFieldBuilder e A-22
FullName e A-27
GroupName A-27
HTMLCOmpoNneNnt e A-27
ImageButton A-28
ImageLabel A-29
INtEger . . A-30
INtRANgE. . . . A-32
IPAddressList.o e A-33
Label ... A-33
LocCale ... A-35
MaCAdAreSS e A-35
MailListName e A-36
ModifyBUtton e A-36
MUIBULION e A-36
MUIICRhOICE o e A-39
MultiFileUpload A-42
NetAdAreSS. . . .o o A-43
NetAddressList i A-43

OPtION . . A-43

viii

Contents

Appendix B

Page A-46
PagedBIoCK A-50
Password e A-56
RemoveButton. e A-57
SaveBULtON. A-58
SCrollList A-59
SetSelector. e A-69
SNMPCOMMUNILY. . . .ot e e A-72
StatusSignalo A-72
Stylish .. A-74
Sty o o A-74
TextBIOCK A-77
TextRield e A-79
TeXtLiSt . . A-80
TIMEStaMP. . . . A-80
TIMEBZONE. . . ot e A-81
UninstallButton A-82
Ul . e A-82
UrList . . A-84
UserName e e A-86
UserNameList A-86
VerticalCompositeFormField A-86

Utility Classes

Appendix C

ArrayPacKer e B-1
ErTOr. . B-3
ServerScriptHelper. B-5

About Style

Style Files C-1
Supported Styles C-2
Boolean C-2
COlOr. C-3
Positive Integer C-3
URL .ot C-3
CommON Propertiest C-3
backgroundColor e C-3
backgroundimage. C-3
borderThickness. i C-4

Contents

fontFamily Cc4
fontSize e C-4
foNtStyle. Cc4
fontWeight C-5
textDecoration C-5
WIEN. . C-5
SIS o C-5
Bar . . C-5
emptylmage C-6
endimage C-6
filledimage. C-6
startimage. C-6
BUttON. . . . C-6
CancelBUtton C-7
Label. ... Cc-7
ModifyBuUtton. C-7
MUItIChOICE e C-8
Page C-8
PagedBIoCK C-9
dividerHeight. o C-10
o o C-10
Password e C-10
RemoveButton. C-10
FEMOVEICON. e e C-11
SaveButton. C-11
SetSEleCtOr. . . o C-11
addicoNGray.o C-11
FEMOVEICON. e e C-12
removelCoNGray.o C-12
SCrollList C-12
borderThickness. C-13
borderColor C-13
sortAscendinglCcon C-13
sortDescendinglcon C-13
sortedAscendinglcon C-14

sortedDescendinglCcon C-14

Contents

StatusSignal C-14
failurelcon C-14
NEWICON . . . C-15
NONEICON. . . . o C-15
NOrMallCoN. e C-15
OldICON . .. C-15
problemlcon. C-16
repliedlcon C-16
severeProblemlcon. C-16
SUCCESSICON. . . .o C-16

CListNavigation e C-17
infoHeight C-17
tabHeight C-17

collapsibleList C-17
borderThickness. C-18
collapsed Icon C-18
expandedICon. C-18
selectedICono C-18
unselectedICon C-19
INfO . . C-19
dOWNICON . . .o C-19
dOWNICONGIAYttt C-19
YPEICON . . . C-20
UPICON. . C-20
UPICONGIAY. . . . et C-20
tab. . C-20
(000, . o C-21
selectedlmageleft C-21
selectedimageRight Cc-21
unselectedimageleft C-21
unselectedimageRight C-22

Appendix D Base Data Types
SCalar . .. D-1
WOrd. . D-1
Alphanum. D-1
Alphanum_plus D-2
It D-2
UINt. D-2

Contents Xi
paddr. D-3
NetWOrK . . . e D-3
Email Address D-3
Netmask D-4
FOdn . . D-4
Hostname e D-4
Domainname D-5

Appendix E Cobalt System Configuration Protocol

Example Headers. E-2

MESSAgES . . . o E-3

CSCP Command SUMMATYo vttt e e E-5
Common Syntax Definitions E-6

CSCP Commandsci ittt e e e e E-6
The AUTHCommand e E-6
The AUTHKEY Command ity E-7
The ENDKEY Command 0. E-7
The CREATECommand. i E-7
The DESTROY Command ity E-8
The SETCommand ot E-8
The GET Command. E-8
The COMMIT Commandii .. E-9
The NAMES Command. E-9
The CLASSES Commandt E-9
The FINDCommand.0 i, E-10
The WHOAMICommand.t E-11
The BYECommand. E-11

CSCP Handler EXtensions.t e e E-12
The BADDATACOoMMANd. ottt e e E-12
TheINFOCommand. E-12
The WARN Command. E-13

Built-in Properties of Objects L. E-13

Appendix F CCE Class Definitions

Programming Conventionsttt F-2

CCEClass Definitions.o v i i F-2
Sy M L . F-2
NEtWOIK . .o e F-3
ROUtE . . e F-3

WOTKGIOUP . . . oot e F-3

Xii

Contents

Workgroup Defaults. F-4

USBr . o F-4
UserDefaults. F-5
MailListo F-5

User.Email F-6
System.Email F-6
System.FTP .. F-7
SYSEM. SNMP . . o F-7
DhepParam. F-7
DRCPStatiC oo F-8

DhepDyNamiCot F-8

Contents Xiii

Acknowledgements

I would like to acknowledge the following people who have been essential to writing this
book: Tim Hockin, Jonathan Mayer, Adrian Sun, Mike Waychison, Will DeHaan, and
Kevin Chiu. Thanks also to Karina Eichmann, Gordon Garb, and Denise Stone.

NOTE: The Security and Active Monitor chapters will be fully covered in the
next version of this book. This is the 1.0 version of this book and it matches the
.76 version of the CCE software release.

Xiv Contents

Chapter 1

Introducing The Sun Cobalt~ Qube 3 Software
Architecture

Introduction

Chapter Contents

Introduction
Audience
About this Book
Related Documents
Document Roadmap
Conventions Used in this Guide
Typographical Conventions
Programmatic Conventions
Terminology

Sun Cobalt™ completed its first Web server appliance software architecture in 1998 and
began delivery of Sun Cobalt Qube™ appliances and Sun Cobalt RaQ™ servers that same
year. The Web appliance market has taken off. Today, Sun Cobalt RaQ servers host hundreds
of thousands of Web sites in data centers around the world. Sun Cobalt Qube 3 appliances
provide basic Web services for thousands more small businesses and educational institutions.

Software developers and service providers now view the Web as the medium for delivering
services. They increasingly see Web server appliances as the vehicle for cost effectively and
easily delivering these services to the edge of their customers’ networks.

Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture

As appliances, these products are fundamentally more cost effective and easier to use than
‘pre-Internet’ general-purpose servers. Just as most consumers receive television
entertainment through set-top box appliances on the edge of cable networks, millions of
businesses, previously excluded from the information technology market place, will receive
services through Web-enabled appliances attached to the Internet.

Sun Cobalt recognized from the start that the user interface and underlying software
architecture for these Web appliances must be designed specifically for this task. Sun Cobalt
has worked with leading network providers, including several of the world’s leading ISPs and
network service providers, to appliantize their Web services. Their requirements are at the
center of Sun Cobalt’s second-generation software architecture, which is described in this
developer’s guide.

The Sun Cobalt Qube 3 software architecture (Qube 3 software architecture) is specifically
designed for delivery of services through the Web model. This model allows services, hosted
on the appliance, to deliver content to many users simultaneously through a graphical user
interface.

The Qube 3 software architecture, code named Sausalito, is designed to provide a superb
developer platform, with the following goals in mind.

* Provide an extensible architecture enabling third-party developers to customize,
modularize, and implement services quickly. Qube 3 Software Architecture interfaces
are documented in this guide, including tools for tuning the user interface and
interfacing with the built-in configuration database. The user interface also includes
such features as a software update indicator and single-button install and delete
capabilities.

* Provide an easy to understand environment for non-technical users. The Qube 3
software architecture masks the complexity of its underlying software and is intended
to provide the framework for maintenance-free services.

¢ Use open standards for quick development time and strong security. The Qube 3
software architecture is designed to run on top of Linux and, in addition to its own
interfaces, uses a number of standard services and interfaces like Apache and LDAP.

* Provide flexibility to localize user interfaces into multiple languages quickly. The
Qube 3 software architecture includes a language library for all localized data.

Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture 1—3

Audience

The audience for this document includes developers who create hardware or software
applications that run on the Qube 3 Software Architecture, Value Added Resellers (VARs),
and others who want to customize the Qube 3 Software Architecture-based systems to fit their
requirements.

About this Book

This book contains the following sections:

Chapter 2, “About The Qube 3 Software Architecture,” provides a high-level tutorial of the
components that make up the Qube 3 Software Architecture.

Chapter 3, “User Interface,” explains how the user interface works with code samples and
examples of how to change the style.

Chapter 4, “Using i118n and 110n in The Qube 3 Software Architecture” describes how to
internationalize and localize the Qube 3 Software Architecture.

Chapter 5, “Introducing the Cobalt Configuration Engine” describes the interaction between
the underlying software for the Qube 3 Software Architecture.

Chapter 6, “Making Qube 3 Software Architecture-Aware Applications,” describes the file
structure you must use to create an application that runs on the Sun Cobalt Qube 3 server
appliance.

Appendix A, “User Interface Foundation Classes” lists the methods in the User Interface
Foundation Classes (UIFC).

Appendix B, “Utility Classes” lists the methods for the utility classes.
Appendix C, “About Style,” lists the default styles used in Qube 3 Software Architecture.

Appendix D, “Base Data Types” lists the base data types used in Qube 3 Software
Architecture. You should be aware of these data types so that your software does not
overwrite them.

Appendix E, “Cobalt System Configuration Protocol” describes the CSCP protocol.

Appendix F, “CCE Class Definitions” lists the properties of CCE classes.

Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture

Related Documents

Information about the Sun Cobalt Qube 3 Server Appliance Manual is available at

htt p: // www. cobal t . con? support/resources/ manual s. ht ni . Information about
Qube 3 Software Architecture is also available at ht t p: / / www. cobal t . con? pr oduct s/
i ndex. htm .

Document Roadmap

This roadmap tells you where to find information for specific tasks.

Table 1-1 Documentation Roadmap

Task Where to find information

Adding a new menu item “Adding a New Navigation Node” on page 3—6

Changing the logo “Making Other Style Changes” on page 3—11

Changing the background color “Changing the User Interface Style” on page 3—10

Internationalizing your application “Using 118n and 110n in The Qube 3 Software
Architecture” on page 4-1

Adding a new service “Building a New Service Module” on page 63

Working with the UIFC classes Appendix A

Working with the Utility classes Appendix B

What are the base classes for Qube 3 Software Appendix C

Architecture

Working with the Object Database (ODB) Appendix D

CSCP Libraries Appendix E

What are the CCE class definitions Appendix F

Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture 1—5

Conventions Used in this Guide

Typographical Conventions

Bol d is used for emphasis, for example:
Each UIFC page should have one and only one Page object.

Bold is also used for words found in the user interface, for example:
test.xm is shown adjacent to Style.

Italic font is used for variables, for example:
require ::= string

Italic font is also used for new terms when they are first used, for example,
these widgets are manipulated from a PHP script by the developer.

Couri er is used for program names and code, and Web resources, for example:
CCE Aut h command returns NULL for failure or a session key for success.

char *cce_auth_cmd

http://ww:. cobal t.com support/resources/ manual s. ht m

Programmatic Conventions

The class definitions use the following conventions:

* All class names have the first character capitalized. For example, Syst em If they have
more than one word, the first character of all words is capitalized. For example,
Mai | Li st .

* Nanespace names follow the same rule as class names.

* All property names start with an all lowercase first word. If a property name has more
than one word, the first characters of the second word onwards are capitalized. For
example, gat eway and st yl ePr ef er ence are valid property names.

1—6 Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture

Terminology

Qube 3 Software Architecture has its own unique terminology:

Cobalt Configuration Engine (CCE): A general name for the entire configuration
architecture.

Cobalt System Configuration Protocol (CSCP): The protocol that connects the CCE client
to the session manager and the Cobalt Object database. CSCP connections provide object-
database functionality and execute handlers as necessary.

Event: A change in a property of an object within the database.
Client: A program using CSCP to request or change information.
Handler: A program called by CCE to affect an event.

Cobalt Configuration Engine daemon (CCEd): The server process that handles incoming
connections and signals.

Chapter 2

About The Qube 3 Software Architecture

Chapter Contents

The Appliance Concept
The User Interface Defines the Appliance
Navigating Around
Building Pages
Abstraction of the System into Objects
Storing the Objects
Manipulating the Objects
Extending the Objects
Watching for Changes
Actuating the Changes
Modularity — Doing Your Own Thing
What CCE is Not

This chapter provides a tutorial-style overview of the Qube 3 software architecture. It
describes the basic concepts, the issues addressed in creating this appliance architecture, and
the solutions implemented to address them.

2—2 Chapter 2: About The Qube 3 Software Architecture

The Appliance Concept

When designing software for a general purpose server, the designers must put as few
restrictions on flexibility as possible. However, an appliance does not have this restriction. A
Sun Cobaltppliance is designed with a single goal in mind: providing a full range of services
through a single user interface, while keeping the ease of use of household appliances. This
goal enables us to narrow the scope of the software and consequentially tightly integrate the
software into the system.

The Qube 3 software architecture is an answer to the appliance concept. The Qube 3 software
architecture allows Sun Cobalto provide a single back-end mechanism for monitoring and
manipulating the system software. Through this mechanism, a very simple user interface can
operate, while keeping the details of the back-end system logically separate.

This separation of interface and implementation is a cornerstone of reusable and reliable
software design. This allows developers to have a stable exported interface that can be used in
their applications for complete integration into the Sun Cobaltnvironment. This is one of the
major goals of the Qube 3 software architecture.

Figure 2—1 provides a basic view of the Qube 3 software architecture. The interface provides
the glue between the user interface and back end.

Figure 2-1 Overview of the Qube 3 software architecture

LUser
Interface

API

Back End

Chapter 2: About The Qube 3 Software Architecture 2—3

The User Interface Defines the Appliance

Appliances make complex systems very easy to use. The user interface plays a strong role in
defining the appliance. The Qube 3 software architecture provides the foundation to build
Web-based user interfaces on the user interface layer. This layer communicates with users and
routes information to and from the back-end. There are several components in this layer: the
navigation manager, User Interface Foundation Classes (UIFC), and St yl i st .

The Qube 3 software architecture was designed to meet internationalization requirements.
The Qube 3 software architecture supports users at different locales by working with
European and Asian languages. The user interface layer uses an internationalization library to
handle this requirement. For example, when the user interface needs to display “Welcome” to
users who speak German, it asks the internationalization library to get the translated string
“Willkommen” to display to users.

Navigating Around

The navigation manager component is designed to provide basic navigation capabilities to
user interfaces. The idea is to separate data that defines the site map and the navigation
managers that walk through the map. On a site map, each node denotes a page on the user
interface and each page can have multiple widgets. Information about the nodes are stored in
special files.

Given a site map, it is up to navigation managers to determine how to walk through them.
Different navigation managers can walk through the same site map differently. Some
navigation managers provide a step-by-step walk through while others show the whole map as
a tree structure so that users can pick the right node instantly.

Building Pages

The Qube 3 software architecture provides many utility libraries and UIFC as a widget set on
which you can build user interface pages. One of the goals of UIFC is to provide consistency
among different pages on a user interface. This is extremely important for the interface’s ease
of use. For example, UIFC fields that represent boolean selections always look the same.
Otherwise, boolean selections can be represented as a checkbox, two radio buttons, or a
change-state-button.

2—4

Chapter 2: About The Qube 3 Software Architecture

UIFC is object-oriented. Each widget has corresponding classes. Also, UIFC is currently
implemented in PHP. Developers must have a basic understanding of object-oriented
programming and PHP before examining UIFC. PHP is a very easy-to-learn and versatile
scripting language designed to build Web pages.

Ht m Conponent Fact ory is a UIFC class that constructs widgets and talks to the
internationalization library. The basic task of this class is to instantiate UIFC widget classes in
common ways and give them parameters of the desired locale. This is the first class to
understand within UIFC.

Server Scri pt Hel per is a utility class that simplifies page building. Its main job is to
communicate with CCE for authentication and to get user preferences. It also provides
methods to make page building easy.

Ideas Behind UIFC

UIFC is a layer above user interface implementation mechanisms, such as HTML. When we
think in HTML, we think at the level of checkbox, radio button, select field, and text field.
When we think in UIFC, we think at the level of boolean selection, option selection, set
selection, and typed inputs. HTML is for implementation; UIFC is for design concept. UIFC
frees UI designers from very low-level implementation details.

UIFC is designed to provide consistency for user interface. Take a simple example: one Ul
designer can use a checkbox to represent an on/off selection on one page, while another
designer can use two radio buttons, one for on and one for off, to represent the same concept.
Such discrepancies make a user interface hard to learn and use. UIFC provides a single widget
for boolean selection, so such concepts are always represented consistently.

UIFC improves portability. Especially for Web-based user interfaces, portability across

multiple browser platforms has always been a trouble spot. Because UIFC users express
things as concepts, UIFC can choose the appropriate implementation through platform-
specific tuning or lowest common denominator approaches.

Sometimes, UIFC can be restrictive. For example, what if UIFC expresses boolean as a
checkbox while a UI designer uses radio buttons for the same concept? To provide this bit of
flexibility, pages using UIFC can be mixed with HTML and JavaScript; however, UIFC users
should be cautious when mixing UIFC and other tools.

Chapter 2: About The Qube 3 Software Architecture 2—5

User Interface with Style

There are lots of style properties on a user interface. A Web user interface includes fonts, font
size, color, images, alignment, and other properties. UIFC support style properties, which are
stored in special files. UIFC widgets parses through these files to get the right style to display.
The Qube 3 software architecture allows multiple styles to coexist on the system and allows
users to choose ones they prefer. Styles are pretty much like “skins” in some applications.

Built-in Internationalization

Internationalization is built into The Qube 3 software architecture and supported through an
internationalization library. The Qube 3 software architecture users often refer strings by their
references rather than the actual strings. This way, the actual string can be fetched from the
string catalog based on the locale preference of the user who reads the string. The Qube 3
software architecture users can also set locale-specific properties. For example, when an input
field should only be displayed for Japanese but not for other languages, we can introduce an

i nput Fi el d property and set it to true only for Japanese. Of course, the code that manages
this field must be made aware of this property.

The Qube 3 software architecture is designed such that an object’s representation resides only
on the user interface layer. Developers should not be surprised that anything below the user
interface layer only passes references instead of the actual strings or other locale-sensitive
resources. When the user interface gets the reference and decides to use it, the
internationalization library is then called to resolve it.

Abstraction of the System into Objects

The first step towards separating the interface from the implementation is to separate the data
from the process. System data, such as configuration options and users, can become abstract

groupings of data or objects. These objects are self-contained, dictating only the information
necessary to recreate themselves. An application can define a class or data structure to enable
the system to know about and manipulate its data.

Chapter 2: About The Qube 3 Software Architecture

This provides developers a flexible way to define new configuration items to the system, as
well as a convenient and single mechanism by which to read all system configuration data.
Figure 2-2 shows the addition of classes and objects.

Figure 2-2 Adding Classes and Objects to The Qube 3 software architecture

User
Interface

Back End

Storing the Objects

Once we have well-defined objects that can accurately represent the system, we need to define
how and where to store them and how to retrieve and modify them. Unlike reading
configuration files, such as / et ¢/ passwd or ht t pd. conf , to determine the state of the
system, a good abstraction should provide a single, flexible way to access all system
configuration data.

The Cobalt Object Database (CODB) is provided as a place to store objects. It is not a
database in the sense of commercial relational databases designed to run a corporate
enterprise, but instead stores the known state of the system. CODB acts as a buffer between a
user interface and the system itself.

Chapter 2: About The Qube 3 Software Architecture 2—7

Objects can be stored, retrieved, modified, and destroyed, all without the user interface having
to know about the details of any given application configuration mechanism. Figure 2—-3 adds
the Cobalt Object Database (CODB).

Figure 2-3 Adding CODB

User
Interface

API

Manipulating the Objects

Now that we have objects that can be stored, created, and destroyed, we need to define a
mechanism by which to do these things. In order to provide a manageable and accountable
access method, Sun Cobalhas defined the Cobalt System Configuration Protocol (CSCP),
which connects clients to the Cobalt Configuration Engine (CCE). CCE is the process that
implements CODB.

Chapter 2: About The Qube 3 Software Architecture

CSCP provides primitives to read, write, create, destroy, and search for objects. To make
accessing CSCP easier, Sun Cobalprovides libraries in several common programming
languages, such as C, Perl, and PHP.

Figure 2—4 Connecting the UI to CCE and CODB

User
Interface

mi}

Extending the Objects

Now that application packages can export their configuration data via CODB classes, other
software packages can take advantage of this. Many times, an application package adds some
functionality to an existing object that did not exist in the base object. Consider an application
that provides some per-user configuration options. With CODB classes, it is easy to define a
class for this data. Now the UI can create an object of this class (an instance) whenever a user
is created and destroy the instance whenever a user is destroyed.

There is one more problem, however. A good abstraction of the object knows nothing of the
user interface and a good user interface engine knows nothing of what classes are available.
How do we associate this new per-user class with a user object?

Chapter 2: About The Qube 3 Software Architecture 2—9

CODB provides the ability to extend a class with a namespace. A namespace is a set of
properties, like a class, that piggy-backs onto other classes. We can change our per-user class
into a user namespace. Now, whenever a user gets created or destroyed, the namespace goes
with it. We also solve the issue of association. We know our new namespace is associated with
user objects by its namespace association.

Watching for Changes

At this point, we have the Cobalt Configuration Engine (CCE) running a database (CODB)
that stores instances of classes and namespaces. This configuration engine understands the
CSCP protocol to affect changes on the CODB. How do the changes made to the CODB
become changes made to the system?

Application packages can register via configuration files to be notified when certain events
occur. The registration mechanism provides the ability for any software package to register
event handlers (or just handlers) on any class or namespace known to the system. Events
understood by the CODB are create events, destroy events, and modify events.

Now that we can register handlers, our software package can create a handler for any event for
which it is concerned. For example, if we need to add a user to our application’s access list,
we might register on the user-create event. When a user is created, our handler is invoked, and
we can do our specific task.

2—10 Chapter 2: About The Qube 3 Software Architecture

Actuating the Changes

When an event is triggered, CCE steps through the list of handlers for that event, and runs
each of them, in turn, until one fails, or there are no more handlers to run.

It is the responsibility of each handler to make the appropriate changes to the system
configuration to actuate the event.

Figure 2-5 Making changes to the system

Config
Files

CSCP

DB} — | Configuration

Modularity — Doing Your Own Thing

At every stage of the Qube 3 software architecture, concern has been given to retain
modularity. It is the goal of the architecture to make adding and removing software packages
have no impact on the rest of the system. This principle should be adhered to as much as
possible.

What CCE is Not

CCE is not a generic data-store. It is not a place for applications to store their data. It is meant
to be a buffer between making abstract changes in the configuration of the system and those
changes happening on the system.

CCE is not a place to store user-interface definitions. CCE should know as little as possible
about any particular user interface implementation.

Chapter 2: About The Qube 3 Software Architecture 2—11

CCE is not a mechanism for a user interface to trigger system events. The user interface
should not rely on any knowledge of the handlers that are registered on an event.

CCE is not a replacement for other security mechanisms. While the Qube 3 software
architecture tries to be secure and cautious in all cases, it should not forego other security
methods.

CCE is not a replacement for a good backups. Much of the system’s data is stored in files on
the system, not in CODB. Protect your data and back up regularly.

2—12 Chapter 2: About The Qube 3 Software Architecture

Chapter 3

User Interface

Chapter Contents
How the Navigation System Works

Adding a New Navigation Node
Building Pages
The User Interface Style
How Styles Work
Changing the User Interface Style

The Qube 3 software architecture is Sun Cobals first fully open programming interface. It is
designed to enable third-party developers to create applications that are seamlessly integrated
into the look and feel of the Qube 3 software architecture-based appliances. One of the layers
within the Qube 3 software architecture is the user interface, which enables you to:

* Manipulate navigation with navigation managers and site maps.
* Manipulate look-and-feel style.

* Build user interfaces pages that are consistent with the Qube 3 software architecture-
based systems.

3—2 Chapter 3: User Interface

How the Navigation System Works

The navigation system is a sub-system within the user interface that manages navigation
through site maps. The system consists of site maps and navigation managers.

The navigation system on the Qube 3 software architecture is a dynamic system. It is
generated from a set of files that define navigation nodes. By linking these nodes together, a
site map is formed. Users can construct site maps by adding and removing nodes. These site
maps are then interpreted by navigation managers. Whenever a user logs in to the user
interface, navigation managers use the site map to govern how the user navigates.

Each node on the navigation graph is defined in an XML file. You must have a basic
understanding of how XML works to use navigation. For XML information, see
http://ww. sun. coml xm /.

Navigation-node XML files are located under the / usr/ sausal i t o/ ui / menu directory.
These files are very simple. It does not matter where or in what subdirectories these files are
placed. All graph related information is contained within the files. Directories can be used to
group these files into a more maintainable manner. To add a node, create a new XML file
under the directory. To remove a node, remove the file. Each XML file contains all the
information the navigation system needs to know about a node.

XML Elements

There are three elements navigation-node XML files can use. They are i t em par ent , and
access elements. Each of the files must contain one and only one i t emelement. Eachi t em
element contains zero or more par ent elements. The par ent elements can be viewed as
links from the children to the parent node. A collection of nodes and links together composes
a site map. Each par ent element can have zero or more access elements.

With no access element, the parent link has no access control and anybody can traverse the
link. With one access element, access is granted if and only if this requirement is met. With
more than one access element, access is granted if any one of the multiple requirements are
met; this is an OR condition.

Chapter 3: User Interface

Table 3—1, Table 3—2, and Table 3-3 list possible attributes of these elements.

Table 3—1 Item Element Attributes

Name Type Description
id [a-zA-Z0-9_\-1+ i d must be unique among XML files. Therefore, it is advisable to prepend package
or vendor tag to the id. See “Using Unique Names” on page 3—7.
label internationalizable | abel is a short readable string that labels the node. Navigation managers can
string display a list of labels for users to navigate to. The interpolate function of the | 18n
module is used to internationalize this string.
description internationalizable Labels can sometimes be too short. A descri pti on is used complement the label
string in describing the node’s content. The interpolate function of the | 18n module is
used to internationalize this string.
type string t ype is used by navigation managers to distinguish items. They can then act on the
items differently. Optional.
url URL as described in ~ This ur | points to the content page of this node. The interpolate function of the
RFC 1738, | 18n module is used to internationalize this string. Optional.
internationalizable
Table 3-2 Parent Elements Attributes
Name Type Description
id [a-zA-Z0-9_\-]+ This is the i d of the parent node that is described in the i t em element.
order integer When there are several children nodes under a parent node, the navigation managers
might need to know which child to use first. The smaller the integer, the more
important the node is. Optional.
require string This is the access required to traverse the parent link. Optional.
Table 3-3 Access Elements Attribute
Name Type Description
require string This is the access required to traverse the parent link.

3—4

Chapter 3: User Interface

Navigation Manager

There are three navigation managers supported by the system currently. They are collapsible
list navigation, flow navigation, and single navigation. New navigation managers may be
added in the future.

Here is an example site map to illustrate how navigation managers work:
Node A has no parent
Node B’s parent is A

Node C’s parent is A

Node D’s parent is C and E
Node E has no parent
Node F has no parent
Node G’s parent is F

Node H’s parent is G

Node I’s parent is G and J
Node J has no parent

The site map looks like Figure 3—1.
Figure 3-1 Site Map

A F

AN
VAVAN

Chapter 3: User Interface 3—5

The collapsible list navigation manager presents a site map in a collapsible list format and lets
users navigate by clicking on items on the list. Users can expand or collapse parents to show
and hide the children nodes, respectively.

To use the collapsible list, users need to supply the root node of the site. For example, using
the above site map as an example with A as root, the collapsible list will look like:

Item B
Item C
Item D

Note that the node A and E are not being shown. This is because node A is the root and there
is no path to descend down from the root to node E. The nodes F, G, H, I and J are not shown
either because they are on a separate branch.

The URL for collapsible list navigation manager is at / nav/ cLi st . php. It needs a root
parameter that specifies the i d of the root, such as
http://<i p>/nav/cList. php?root =<root >.

The flow navigation manager allows users to navigate forward or backward through a site
map. Conditional branches for forward are supported.

The root node needs to be supplied to the flow navigation manager and that becomes the first
step of the flow.

Take the above site map as an example with F as the root. Navigation starts at F. Users can
move forward to G. No moving backward is allowed on the root node. At G, users can move
backward to F or forward to either H or I. Moving to H or I depends on a condition check at
G. At H or I, users can move back to G or finish the navigation. Note that users at I cannot
move backward to J.

Conditional forward is supported by a JavaScript interface. At the node where a conditional
forward is necessary, that is, G in the above example, a get Next | t em d() JavaScript
function must be specified in the content page. This function should return the i d of the next
node when it is called with no parameters.

Error checking is supported. When an user wants to move forward, all the

submi t Handl er () s of all the form elements of the content page are called with no
parameters. The forward operation proceeds only if all the subni t Handl er () s return true. If
you use UIFC to build your content page, subni t Handl er () s are automatically defined.

Chapter 3: User Interface

During the forward operation, after error checking is done at the front end, the form on the
content page is submitted. The handler of the form submitted should tell flow navigation
manager if submission is successful or not. If successful, navigation moves to the next node.
Otherwise, it stays at the same node. To notify the navigation manager, the form handler
should return a page that sets the JavaScript variable f | ow_success to true or false, with true
indicating success. Note that this variable is automatically handled by the t oHandl er Ht m ()
method of the Ser ver Scri pt Hel per class.

The URL for flow navigation manager is at / nav/ f | ow. php. The root parameter needs to be
supplied, such as ht t p: / / <i p>/ nav/ f | ow. php?r oot =<r oot >.

Single navigation manager only supports one single node and does not allow users to navigate
into other nodes.

The URL for single navigation manager is at / nav/ si ngl e. php. The root parameter needs
to be supplied, such as ht t p: / / <i p>/ nav/ si ngl e. php?r oot =<r oot >.

Adding a New Navigation Node

The example below demonstrates how to add nodes to the user interface (UI). We will add two
nodes in the example. Figure 3—2 on page 3—9 shows the result of this addition.

helloMenu.xml
<item
i d="sanpl e_hel | owor | dmenu"
| abel ="Hel l o World App"
description="This nenu contains the Hello Wrld application">
<parent id="base_administration" order="100"/>

</itenp
hello.xml
<item
i d="sanpl e_hel | onor | d"
| abel =" Hel | 0"

description="This itemsays hello to the world"

url ="/ sanpl e/ hel | o/ hel | oWor | d. php" >

<parent id="sanpl e_hel |l owor|dmenu" order="0"/>
</itenpr

Chapter 3: User Interface 3—7

Node sanpl e_hel | owor | dnenu is a child to node base_admi ni strat i on and node
sanpl e_hel | owor | d is a child of node sanpl e_hel | owor | drrenu.

Using Unique Names

You must use unique names for navigation nodes to avoid name conflicts. Sun Cobalt
recommends that you choose a vendor-specific name for your modules and create directories
with the vendor name. For example, if your company name was ivory, your XML files for the
account information page would be i vory_account . xm in the / usr/ sausal i t o/ ui /
nenu/ i vory directory.

Building Pages

Pages on The Qube 3 Software Architecture are built with PHP, because UIFC, the widget
classes, and other utility classes are currently implemented in this language. These classes the
foundation of The Qube 3 Software Architecture user interfaces and they are available to be
used by developers.

The object classes, called the UIFC, define objects such as buttons, lists, checkboxes, and
radio buttons. These widgets are manipulated from a PHP script by the developer and then are
automatically turned into proper HTML for display to the user. All the UIFC widgets have
been built with the concept of styles. This allows the look of the entire UI to change, with no
code changes. UIFC has also been designed to work seamlessly with internationalization,
commonly referred to as i 18n. See Appendix A, “User Interface Foundation Classes” for a
complete reference for UIFC. See Chapter 4 for information on internationalization.

The utility functions provide pre-packaged functionality that is commonly needed by Web-
based UIFC applications. Utilities, such as conversions between strings and hashes, and
widget allocations are greatly simplified by utility functions. See Appendix B, “Utility
Classes” for a description of the utility classes. For information on Styles, see “The User
Interface Style” on page 3—10.

Chapter 3: User Interface

A Further Example

We’ve already shown some examples of adding a menu, so let’s put all the pieces together and
see how it looks. This example is expanded in subsequent chapters to show how to
internationalize your application, add handlers, and have it work with the Qube 3 software
architecture’s Active Monitor.

menu/helloMenu.xml
<item
i d="sanpl e_hel | owor | dmenu"
| abel ="Hell o Worl d App"
description="This menu contains the Hello Wrld application">
<parent id="base_adm nistration" order="100"/>
</itenpr

menu/hello.xml

<item
i d="sanpl e_hel | owor| d"
| abel =" Hel | 0"

description="This item says hello to the world"

url ="/ sanpl e/ hel | o/ hel | oWor | d. php" >

<parent id="sanpl e_hell owor!| dmenu" order="0"/>
</itenp

web/helloWorld.php
<htm >
<body bgcol or="#ffffff">
<hl> Hello, World! </hl>
</ body>
</htm >

Putting all of these files together creates the Web page shown in Figure 3-2 on page 3-9.
Now, we can take advantage of the UI libraries. It might seem odd that the next example is, in
fact, longer than the non-UIFC version, but for a use as trivial as this, the overhead of UIFC
outweighs the benefits. When pages get longer and more complex, however, the benefits
dwarf any overhead.

Chapter 3: User Interface 3—9

web/helloWorld.php
<?php
/1 PHP file to display "Hello, World"

i ncl ude(" Server Scri pt Hel per. php");

$servhel p = new Server Scri pt Hel per () ;
$factory = $servhel p- >get H Ml Conponent Fact ory(" base-an');
$page = $f actory->get Page();

print ($page- >t oHeaderHt m ());

$l abel = $factory->getlLabel ("Hello, World!", false);
print($l abel ->toHm ());

print ($page->toFooterH m ());
?>

Putting all these files into place results in the screen shown in Figure 3-2.

Figure 3-2 Hello World in the Sun CobalMenu

Fip BN Wisd 0 s HEp
<« & 3 i a bl 4 of [} A E
Bk P Zaaxh heacape Prind Seomily Shap Slop

1 S TSI S e p—"— A T WA R
[o Gogie g Velow Fage | Crasssh

'E iC i A LT g
arm o owrmawmn

Heallo, World!

& s o L

3—10 Chapter 3: User Interface

The User Interface Style

How Styles Work

The Ul styles are defined in St yl e definition files. The St yl e definition file contains all the
configurable items of the look and feel of UIFC’s visual appearance. You can modify this file
to change logos, background colors, text, and other features. See Appendix C, “About Style”.

Changing the User Interface Style

Style interacts with the UIFC that is described in Appendix A, “User Interface Foundation
Classes”. Most of the widgets depend on St y| e to set background images and colors, font
size and weight, and other parts of the visual elements.

The Qube 3 Software Architecture ships with one style file: t r ueBl ue. xni . You can modify
this file and save it as your own style file. You must give it a new name and create a new
directory for your own style. The following example gives you high-level instructions for
creating a directory for your new style sheet, copying and modifying the style file.

IMPORTANT! You must make a copy of t r ueBl ue. xm .

1. Change directories to / usr/ sausal i to/ ui /styl e.
2. Copy the style file, t rueBl ue. xml tovendor _styl e. xni .
3. Add any graphics or other files needed for your style file.

The following is an example of modifying the t r ueBl ue. xmi file. In this example, the
following UI properties were changed, as shown in Figure 3-3 on page 3—11.

* trueBlue. xnm wascopiedtotest.xnl ;the wordt est is shown adjacent to Style
in Figure 3-3 on page 3—11.

* The color value for the aLi nkCol or value was changed to #0033CC.
* The title alignment was changed from left to right by modifying the t abAl i gn value.

* The font size was changed by modifying <pr operty name="f ont Si ze"
val ue="12pt"/ >to <property nane="font Si ze" val ue="18pt"/>.

Chapter 3: User Interface 3—11

Similarly, changes were made to the background and divider colors of the table cells, and to
the button font and colors, and to the alignment of the image.

Below is an example of a modified style file.

Figure 3-3 Modified Style File

Fis fdf Vs Ga TCTammarisizn Help
<« - 3 W@ A = 4 o 0O u
Back Fhriand Seach MEKCapD Pt faoafly Bhas E08 |

3 =" Bagirorie & Loceion fkeep . ressty dded fuwmsclint . pig i cozeraat | 47 Wrarc Reisisd

[oF Coogln g Vallaw g | Chanrsdy

Fiall M i [nowd rd s tirotior

Lengungn Prelsmnce _-léé‘-lt From Brpsaer Splionss- ".l

Snjhe Task = |

M Passasrd]

Making Other Style Changes

You can make other style changes in addition to the ones shown in Figure 3—3 by making
further modifications to your vendor_style file.

You can substitute your logo for Sun Cobalk logo by searching for the line:
<property nane="| ogo" val ue="/1i bl nage/toplLogo.gif"/>

and putting the . gi f file for your logo in place of t opLogo. gi f .

3—12 Chapter 3: User Interface

Chapter 4

Using i18n and I110n in The Qube 3 Software
Architecture

Chapter Contents
i18N: A World Tour
Terminology

How Internationalization Works
Using Domains, Tags, and Locales
Using Interpolation

The i18n Interface

The i18n PHP Interface
Internationalization Example

118N: A World Tour

This chapter explains how to internationalize and localize the Qube 3 software architecture.

Terminology

This chapter uses two terms: internationalization, which is referred to as i 18n, and
localization, which is referred to as | 10n.

Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture

Internationalization refers to the operation by which a set of programs are made aware of and
are able to support multiple languages. This is a generalization process by which the programs
are freed from calling only strings of a locale or other locale-specific habits. Program
developers can use various techniques to internationalize their programs. GNU get t ext
offers one of these standards. For more information about get t ext , see

http://ww. gnu. or g/ manual / gettext/htm _nono/gettext. htm .

Localization means the operation by which, in a set of programs already internationalized, the
developer gives the program all needed information so that it can adapt itself to handle its
input and output in a fashion that is correct for some native language and cultural habits. This
is a particularisation process, by which generic methods already implemented in an
internationalized program are used in specific ways. The programming environment provides
several functions at the programmers disposal that allow this runtime configuration. The
formal description of the specific set of cultural habits for some country, together with all
associated translations targeted to the same native language, is called the locale for this
language or country. Users achieve localization of programs by setting proper values to
special environment variables, prior to executing those programs, identifying which locale
should be used.

How Internationalization Works

The the Qube 3 software architecture provides a simple-to-use interface to a database of
localized strings used for internationalizing applications. This i 18N interface is similar to the
GNU get t ext interface, and is, in fact, a higher-level wrapper that encapsulates GNU

get t ext functionality.

Like GNU get t ext , the Qube 3 software architecture i 18n library allows developers to
create their own databases of localized strings, and provides an interface for accessing that
database from within applications. The the Qube 3 software architecture i 18n wrapper library
adds the following new functionality:

e Strings fetched from the library are subject to an interpolation process, in which user-
supplied variables and even other internationalized strings can be automatically
substituted into the localized string.

* Access to a set of routines for properly escaping the fetched strings for use in Web
applications, that is, for use in HTML documents or JavaScript programs.

* Automatic negotiation of the best possible locale, from a preference-ordered list of
locales.

Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture 4—3

Using Domains, Tags, and Locales

The the Qube 3 software architecture i 18N library manages a database of localized strings.
Each application or module is granted its own namespace within the database. This
namespace is a called a domain. Within each domain, individual messages are identified as a
string known as the message tag.

When an application retrieves a message from the i 18N database based on the message’s
domain and message tag, the i 18n searches the database for a localized message that most
closely matches the preferred locale.

Domains

Tags

A domain is a grouping for a similar set of resources, for example, the sendnzi | package can
be a unique domain. In practical terms, localization strings are packaged by domain. Each
domain defines the default language for its use in its own pr op file. This file contains only a
locale specification. The file is located in the same directory and its name is derived from the
domain rather than the locale, for example, cobal t. prop for the Sun Cobalt domain.

Developers retrieve message strings from the i 18N database by specifying both the domain
and the message identifier for each string.

A tag identifies a text string within a domain of strings for use in interpolation and | 18N. The
tag identifies the localized string. The localized string is identified by the t ag specified in the
function call and the domai n specified within the i 18N object. The locale used is the one
negotiated during the creation of the i 18N object. Developers retrieve message strings from
the i 18N database by specifying both the domain and the message id for each string using the
"[[domai n. msgi d]] " tags.

Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture

Locale

Locales are specified by strings that start with an ISO-639 two-letter language code and an
optional variant, all separated by underscore characters, for example, en_US.

In summary, the grammar for a locale identifier is:
locale_id :=lang-code ['_' country-code ['_' variant-code]]

wher e | ang- code, count ry-code, and var i ant - code are all alphanumeric codes
defined in ISO-639.

The following are some example locale identifiers:
* en: Generic english.
* en_US: English, American dialect.

* ja JP_EUC Japanese, as spoken in Japan, the EUC variant.

When the i 18n library is initialized by an application, a comma-delimited list of locales is
supplied to the i 18n library. This list of locales indicates the various locales that the user can
understand, in order of preference. The i 18n library uses an intelligent algorithm to attempt
to select the best available locale for each domain because not all domains support the same
set of locales, for example: en_USoren, ja.

How Strings Are Added to the System

Adding new strings to the system is a three-step process:

1. A new . po file is created. This . po file defines all the message strings for one domain and
one locale.

2. The . po file is compiled into an . no file using the msgf nt tool.

3. The . no file is placed in the appropriate directory beneath
/usr/sharel/l ocal e/l ocal e/ LC_MESSAGES.

Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture 4—5

Using Interpolation

When a string is fetched from the i 18n library, it is subject to a process called interpolation.
Interpolation allows user-supplied variables to be intelligently substituted into the string in
various places. It also allows a string to contain references to other messages in the i 18n
database, which are expanded to full messages when interpolation occurs.
For example, if the following string is stored in the i 18n message string database:

"Hello, my nane is [[VAR nane]]."
If the i 18n_get function is called with the user-supplied variable nane set to Bob, the
following string would be returned by the library:

"Hell o, my nane is Bob."

Interpolation Rules

Every time a localized string is retrieved from the | 18N database, it undergoes interpolation

according to the rules defined below.

Rule 1. The string is subdivided into a list of tokens according to the following grammar:
string : = token*

token := (text | tag)

tag := [[domain . tagname var*]]
var := , key = value.

text := escaped-string

domai n : = escaped-string

tagnane : = escaped-string

key := escaped-string

val ue : = escaped-string

NOTE: The t ag grammar interpolates the tag configuration in this format and
substitutes variables into the string.

4—6 Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture

Rule 2. Strings are unescaped according to the following rules:
\n -> newine
\b -> backspace
\a
\f -> fornfeed
\n -> newine
\r ->return
\t ->tab
\v -> vertical newine

\(char) -> literal character
Rule 3. Tags are subject to the following expansion rules:

If the domain equals VAR, then variable expansion occurs. The variable specified in t agname
is looked up in the current hash of variables. Its value is interpolated according to these rules
and its value is substituted here.

If the domain is not equal to VAR, than the domain token is interpreted as the name of ai 18n
domain. The t agnane token is interpreted as a message identifier, and the appropriate sub-
string is fetched from the i 18n database and interpolated.

Rule 4. The expanded unescaped tokens are reassembled into a single internationalized string.

The i18n Interface

Application developers use the following interface to fetch properly interpolated and escaped
strings from the i 18n database. Generally, the programmer first calls a constructor to create a
new i 18n object, performs a number of fetch operations, and then destroys the i 18n object.

The i 18n object performs its own memory management on strings that it returns. When the
i 18n object is destroyed, all memory allocated for various strings is freed automatically.

The i 18n library is a C library, but Perl and PHP bindings are provided in addition to the C
interface. These various interfaces to the i 18n library are documented below.

Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture 4—7

The i18n C Language Interface
The function prototypes for the C language interface are in the following i ncl ude file:
/usr/sausalito/include/cce/i1l8n.h

The link library for i 18n is in these directories:
/usr/sausalito/lib/libil8n.a (library for static |inking)

/usr/sausalito/lib/libi1l8n.so (library for dynanic |inking)

The function interface for the C language interface follows.

i 18n_handl e *i 18n_new (char *domai n, char *| ocal es)
Description: Constructs a new i 18n object and returns a pointer to it.
Parameters:
domai n: Identifies the default domain to use for operations where domain is omitted.

| ocal es: A comma-delimited list of locale identifiers, listed in order of preference. This
list of locales is used to choose the best locale for each domain when strings are retrieved
from the database.

Returns: NULL for failure. Otherwise, returns a handle to a newly constructed i 18N object.

void i 18n_destroy (i 18n_handl e *handl e)
Description: Destroys an i 18n object, cleaning up all memory allocated by the i 18n object.
Parameters:
handl e: Thei 18n object to be destroyed.

Returns: Nothing.

4—8 Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture

i18n_vars * i18n_vars_new (void)

Description: Constructs a new object used to store an associative array of variables for use by
the various i 18n i nt er pol at e and get functions.

Parameters: None.

Returns: A pointer to a new i 18n_var s object (a GHashTabl e).

void i18n_vars_add (i18n_vars *v, char *key, char *val ue)

Description: Adds a new key- val ue pair to the i 18n_var s object. Copies of both the key
and val ue are stored within the i 18n_var s object. If this object is passed to a

i 18n_i nt er pol at e or similar function, it is used during interpolation to expand the VAR
tags.

Parameters:

v: A pointer to a validi 18n_var s object key — a NULL-terminated string indicating the
variable name.

key: A NULL-terminated string indicating the object key.
val ue: A NULL-terminated string indicating the value of the named variable.

Returns: Nothing.

void i18n_vars_destroy (il8n_vars *v)
Description: Destroys an i 18n_var s object and frees all memory associated with it.
Parameters:
v: The pointer to the i 18n_var s object to destroy.

Returns: Nothing.

Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture 4—9

char *i18n_interpolate (i18n_handle *h, char *str, i18n_vars *vars)
char *i18n_interpolate_htm (i18n_handle *h, char *str, i18n_vars *vars)

char *i18n_interpolate_js (il8n_handle *h, char *str, i18n_vars *vars)

Description: These three functions provide direct access to the interpolation functionality
within the i 18n library.

Thei 18n_i nt er pol at e function does not escape its output at all.

The i 18n_i nt er pol at e_ht m function performs an additional escaping expansion on the
string it returns, escaping it appropriately for use in HTML content.

Thei 18n_i nt er pol at e_j s function performs additional escaping, similar to the
i 18n_i nter pol at e_ht m function, except that the string is escaped appropriately for use in
JavaScript content.

Parameters:
h: A pointer to a valid i 18N_handl e object.
str: A NULL-terminated string to subject to interpolation, as described above.

var s: A pointer to a valid i 18n_var s object. This object is used to find values for all
variables needed during string interpolation.

Returns: A NULL-terminated string containing the results of interpolation on the string str .
Optionally, this string can also have been escaped for use in HTML or JavaScript content.

char *i18n_get (i 18n_handle *i, char *tag, char *domain, i18n_vars *vars);
char *i 18n_get _htmi (i 18n_handl e *i, char *tag, char *donain, i18n_vars *vars);
char *i18n_get _js(i1l8n_handle *i, char *tag, char *domain, i18n_vars *vars);

The _get functions are identical to the _i nt er pol at e functions, except that the message
identified by domai n and t ag is fetched and then interpolated.

4—10

Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture

char
char
char

char

*j18n_strftime(i 18n_handle *i, char *format, tine_t tine);

*i 18n_get _datetine(i 18n_handle *i, time_t t);
*j 18n_get _date(i 18n_handle *i, time_t t);
*j18n_get tinme(il8n_handle *i, tine_t t);

Description: These four functions get the time in the correct format for the current locale.
Given a format that is identical to the one for st r f t i me formats, the epochal time as found in
ti me_t to the current locale settings.

Parameters:
i © The current i 18n object.
format : The format to print the string in: %, %X, and %C are useful.
t : The epochal time to format.

Returns: A pointer to a string formatted to the specified time.

The i18n PHP Interface

$i 18n

new i 18n (domai n, |anguages)
Description: Constructor.
Parameters:

domai n: Sets the default domain to use for interpolation when domain is not explicitly
specified.

| angs: A comma-delimited list of locale identifiers, listed in order of preference. For
example, j p, sh, oren.

Returns: A new i 18n object.

Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture 4—11

Object Methods

function i 18N($domain = "", $langs = "")
Description: Constructor.
Parameters:
domai n: A string that describes the domain.

| angs: A comma-delimited list of locale identifiers, listed in order of preference. For
example, en_US, en_AU, zh, de_DE. Optional.

function get($tag, $domain = "", S$vars = array())
Description: Gets a localized string.
Parameters:

t ag: The tag of the string in string. Identical to the msgi d string in the . po file.

domai n: The domain of the string in string. Identical to the . po or . no file name without
the extension. Optional. If not supplied, the one supplied to the i 18N constructor is used.

vars: A hash of variable key strings to value strings. Optional. If the hash contains

"name" => "Kevin" and the string in questionis" My nanme is [[VAR nane]]",then

"My name is Kevin" isreturned.

Returns: A localized string if it is found or the tag otherwise.

4—12 Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture

function getJs($tag, $domain = "", $vars = array())
Description: Gets a localized string and encodes it into JavaScript-friendly encoding.
Parameters:
t ag: The tag of the string in string. Identical to the msgi d string in the . po file.

domai n: The domain of the string in string. Identical to the . po or . no file name without
the extension. Optional. If not supplied, the one supplied to the i 18N constructor is used.

vars: A hash of variable key strings to value strings. Optional. If the hash contains
"name" => "Kevin" and the string in questionis" My nanme is [[VAR nane]]",then
"My nanme is Kevin" isreturned.

Returns: A JavaScript-friendly localized string if it is found or the tag otherwise.

function getH m ($tag, $domain = "", $vars = array())
Description: Gets a localized string and encodes it into HTML friendly encoding.
Parameters:
t ag: The tag of the string in string. Identical to the msgi d string in the . po file.

domai n: The domain of the string in string. Identical to the . po or . no file name without
the extension. Optional. If not supplied, the one supplied to the i 18N constructor is used.

vars: A hash of variable key strings to value strings. Optional. If the hash contains
"nanme" => "Kevi n" and the string in questionis" My nane i s [[VAR nane]]", then
"My nane is Kevin" isreturned.

Returns: An HTML-friendly localized string if it is found or the tag otherwise.

Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture 4—13

function interpol ate($magicstr, $vars = array())
Description: Gets a localized string out of a fully-qualified tag.
Parameters:

nmegi cst r: The fully-qualified tag of the format:
"I[" . <domain> . "." . <tag> (. "," . <key> . "=" . <value>)* .

Il]] n
vars: A hash of variable key strings to value strings. Optional.

Returns: A localized string or magi cst r if interpolation failed.

function interpol ateJs($magi cstr, $vars = array())

Description: Gets a localized string out of a fully-qualified tag and encodes it into JavaScript-
friendly encoding.

Parameters:

magi cst r: The fully-qualified tag of the format:
"I[" . <domain> . "." . <tag> (. "," . <key> . "=" . <value>)* .

7

vars: A hash of variable key strings to value strings. Optional.

Returns: A JavaScript-friendly localized string or magi cst r if interpolation failed.

function interpol ateHt m ($magi cstr, $vars = array())

Description: Gets a localized string out of a fully-qualified tag and encodes it into HTML-
friendly encoding.

Parameters:

magi cstr: The fully-qualified tag of the format:
"[[" . <domain> . "." <tag> (.

7

var s: A hash of variable key strings to value strings. Optional.

non
1

<key> . "=" . <value>)* .

Returns: An HTML-friendly localized string or magi cst r if interpolation failed.

4—14 Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture

function getProperty($property, $domain = "", $lang = "")

Description: Gets a property value from the property file
/usr/shar e/l ocal e/ <l ocal e>/ <domai n>. pr op. Properties are defined as
<nanme>: <val ue>\n in the file. Each property is on its own line. Comments start with #.

Parameters:
property: The name of the property in string.

domai n: The domain of the property in string. Optional. If not supplied, the one supplied
to i 18N constructor is used.

| ang: A comma-delimited list of locale identifiers, listed in order of preference. For
example, en_US, en_AU, zh, de_DE. Optional. If not supplied, the one supplied to
i 18N constructor is used.

function getFile($file)

Description: Gets the path of the file of the most suitable locale. For example, if/ | ogo. gi f
is supplied, locale j a is preferred, and /I ogo. gi f, /| ogo. gi f. en and
/'l ogo. gi f.] a are available, /1 ogo. gi f.j a is returned.

Parameters:
file: The full path of the file in question.

Returns: The full path of the file of the most suitable locale.

function getAvai |l abl eLocal es($domain = "")
Description: Gets a list of available locales for a domain or everything on the system.
Parameters:
domai n: i 18n domain in string. Optional.

Returns: An array of locale strings.

Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture 4—15

function getLocal es($domain = "")
Description: Gets a list of negotiated locales.
Parameters:
donmi n: i 18n domain in string. Optional.

Returns: An array of locale strings, the first one being the most important, and so forth.

function strftine ($format = "", $tinme = 0)
Description: Wrapper tostrftime().
Parameters:

f or mat : The format parameterto strfti ne().
ti me: The epochal time.

Returns: A strftine() formatted string.

Internationalization Example

This is the code used to create this menu.
msgi d "hel | oMenul t ent

nsgstr "Bonjour"

msgi d "hel |l oMenul t em hel p"

nsgstr "Ceci dit Bonjour a |la Monde"

msgi d "hel | oMenu”
nsgstr "Bonjour Monde App"

msgi d "hel | oMenu_hel p*

nsgstr "Ceci est |’'application Bonjour Mnde"

4—16 Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture

nmsgid "hell oString"
nsgstr "Bonj our Monde!"

Bon j our Monde!

This is the Makefile.

Makefile for sanple hello_world Sausalito application

VENDOR = sanpl e
APP = hello

SRCS = en fr
1 18NDI R = /usr/share/l ocal e/

all:

nothing to do for all

install:
for ain $(SRCS); do \
DEST=$(| 18NDI R) / $$a/ LC_MESSAGES; \
nkdir -p $$DEST; \
megf mt -e$$a/ $(APP).po -e -0 $$a/ $(VENDOR) - $(APP) . no; \
install -o root -g root -m 644 $$a/*. m $$DEST; \
done

Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture 4—17

Figure 4-1 Internationalized Hello World example
file Edit View Go Communicator

<« 2 A &4 2 m < &4 B8 @

Eack Forgard Reload Harme Search Metscape Frint Security Shop Stop

W" Bookmarks ‘& Location: F_https:,-",-"testy:Slfnav,-"cList.php?root=root {| @' Whats Ri

& Google ¢ Yellow Pages [Channels

e

F Users and Groups

" Email Services Bonjour kaonde!
F File Services

F Web Services

- Metwork Services

F Software Updates

F System

" Maintenance

F Usage Information
 Active Monitor
 Bonjour Monde App

4—18 Chapter 4: Using i18n and 110n in The Qube 3 Software Architecture

Chapter 5

Introducing the Cobalt Configuration Engine

Chapter Contents

CCE — The Cobalt Configuration Engine

Basic Concepts

How Data Flows Through CCE
The CCE Daemon (CCEd)

Command-Line Parameters
CSCP — The Cobalt System Configuration Protocol
CODB — The Cobalt Object Database
Schemas

How to Read XML Syntax Descriptions

Schema Syntax

Sample Schema Definition File
Handler Registration

Events

Handlers

Stages

File Naming

Sample Handler Registration File
CCE Libraries

C

Perl

PHP

Chapter 5: Introducing the Cobalt Configuration Engine

The Cobalt Configuration Engine (CCE)

If the user interface is the face of the Qube 3 software architecture, the Cobalt Configuration
Engine (CCE) is the brains. CCE is the agent by which the user interface affects changes on :
system. It provides a unified interface to the task of configuring a system, and provides an
abstraction layer between the user interface and the underlying system software.

CCE allows the development of a user interface that is truly flexible—it does not need to have
intimate details about the underlying system. CCE is also designed to be extremely flexible,
and allow developers to add new configuration options easily. Developers can extend CCE in
the following ways:

Add configuration definitions to define new configurable applications (classes).

Add configuration information to extend the number of configurable options for an
existing application (namespaces).

Add to the list of things that CCE does when configurable options change (handlers).

Basic Concepts

CCE is broken into several logical units for easier understanding. The major pieces of the
CCE system are:

The CCE daemon (CCEd), which handles incoming connections, sessions, and
signals.

The Cobalt Object Database (CODB), which maintains the object store that reflects the
current configuration of the system.

The Cobalt System Configuration Protocol (CSCP), which is the protocol, or language,
that CCE uses to communicate with clients.

The CCE client libraryl(i bcce), which provides routines for clients to better access
CCE via CSCP.

The event handlers, which are the programs that make CCE changes take effect on the
system itself.

Chapter 5: Introducing the Cobalt Configuration Engine 5—3

CCEd maintains the configuration state of the system in a set of objects representing the
configurable applications, such as email and file sharing. These objects are stored internally
by CODB. System configuration files are generated or modified by event handlers, which are
triggered by a client making changes through CSCP. A client can be either a user interface or
a program written to interface with CCE.

Figure 5-1 CCE Block Diagram

How Data Flows Through CCE

From start to finish, getting data to do the right things and go to the right places can seem
complicated. The general flow of data through CCE is as follows:

Packages register via configuration files for notification of when properties of objects
change, or when objects are created or destroyed, which are knewenss

CCEd listens for incoming clients.
A client connects to CCEd, which communicates using the CSCP protocol.
The client gets or sets properties, or creates or destroys objects to configure the systen

CCEd determines which handlers need to run to actuate events from the client, and
runs them.

The handlers communicate with CCEd, if needed, via CSCP.

The handlers each do their work and exit, indicating their state of success. If all
handlers succeed, the changes are saved to the CODB. Otherwise, changes are ignore
and discarded.

CCEd returns the status of the transaction to the client via CSCP.

5—4 Chapter 5: Introducing the Cobalt Configuration Engine

Figure 5-2 illustrates the flow of CCE data.
Figure 5-2 CCE Process Flow

rl:l}mmif
to
rarabase

ﬂl-mr makes Fl""'“'k Up

changes and Kun

] IHJI.G!I!.'I."I

The CCE Daemon (CCEd)

The CCE daemon (CCEd) is the server process that implements the core of CCE. CCEd
accepts incoming client connections on a UNIX domain socket and initiates the CSCP
protocol; see “The Cobalt System Configuration Protocol (CSCP)” on page 5-5. Each
incoming connection is handled by a child process of the master CCEd process, leaving the
master process to handle new connections and signals. While active, the child process is
responsible for running handlers, maintaining and updating the object database, and
communicating with the client. The master process also catches signals delivered to it, such a:
an interrupt signal, and distributes the signal to all the children, accordingly.

To preserve data integrity, all CSCP write operations for all clients are serialized. This does
not affect the performance of the system, because there are not typically multiple
simultaneous administrative sessions. For several reasons, including security, file system
access, and handler access, CCEd must ruocas Users must authenticate to CCEd to
perform most tasks in order to protect the system: see “The AUTH Command” on page E-6.
This authentication is passed through the Linux system of Pluggable Authentication Modules
(PAM).

Chapter 5: Introducing the Cobalt Configuration Engine 5—5

CCEd Command-Line Parameters

Usually, CCEd does not need command-line parameters. However, for debugging handlers ol
CCE itself, it is sometimes useful to change certain aspects of CCEd’s behavior. The
following command-line parameters are available:

Table 5-1 CCEd Command-Line Parameters

Parameters Description

- C directory Set the handler configuration directory, / usr/ sausal i t o/ conf is the
default.

- d number Set the debug mask; 0 = no debugging (default), Oxftfftfft = full debugging
and profiling.

-nd Do not run as a background daemon.

- nf Do not fork child processes, handle only one client.

-nh Do not run any handlers.

-ro Read-only; do not save database changes; implies - nh.

- St seconds Set the client aut hkey timeout, 1 hour (3600 seconds) by default.

-V Verbose.

-V Print version information and exit.

- VvV Print even more version information and exit.

The Cobalt System Configuration Protocol (CSCP)

The Cobalt System Configuration Protocol (CSCP) is a simple protocol for communication
between clients and the CCE, and between the CCE and event handlers. It is a text-based,
newline delimited protocol, similar in form to FTP or HTTP. It is simple enough to be
understood and debugged without the need for special tools.

To use CCE, you must use CSCP. The simplest way to use CSCP is with the command-line
tool/ usr/ sausal i t o/ bi n/ ccecl i ent . This tool provides full access to CSCP directly,

and is similar to using telnet to connect to TCP services. Wrapper libraries are provided for
several popular languages to make CSCP easier to use from within programs.

For detailed information about the protocol specification, see Appendix E, “Cobalt System
Configuration Protocol”.

Chapter 5: Introducing the Cobalt Configuration Engine

The Cobalt Object Database (CODB)

Schemas

The Cobalt Object Database (CODB), is similar in many respects to both traditional databases
and object systems. It also differs in some significant ways. Every object stored within CODB
has a unigue identifier, its object ID (OID), which CSCP uses to identify instances. Like
traditional relational databases, CODB has a query language that allows the developer to
access stored data. Unlike a traditional database, CCE uses CSCP, rather than SQL.

The traditional form of object manipulation is through object methods. These methods
encapsulate and protect object data, stored in properties. CODB, by design, takes a different
approach. The Qube 3 software architecture system deals exclusively with properties. Unlike
traditional object systems, there are no directly-executing methods in the Qube 3 software
architecture. Instead, the Qube 3 software architecture provides events and event handlers,
which act as method code.

The structure of objects within CODB is definedssiiemashat are provided by third-party
vendors. Schemas, in the form of schema definition files, provide #3s, property, and

t ypedef definitions necessary to impose order on the data within CODB. The syntax of a
schema definition file is simple XML and is very flexible.

How to Read XML Syntax Descriptions

Before proceeding, it is prudent to briefly cover the pieces that make a file XML. XML is a
plain-text file format, similar to HTML, or their common ancestor SGML. XML files are
parsed and the data in them is stored in a manner that is useful to the controlling application.

Whitespace

Throughout XML files, most whitespace characters (spaces, tabs, and newlines) are ignored.
The only exceptions to this rule are within quoted strings and within the content field of an
element. In these cases, called significant whitespace, whitespace is preserved.

Chapter 5: Introducing the Cobalt Configuration Engine 5—7

Symbols

To better represent the syntax used in this explanation, some symbols are necessary. Table 5-
explains symbols herein.

Table 5-2 Symbols Used in Schemas

Symbol Definition

SP Represents one whitespace character (space, tab, or newline).
SQ Represents one single-quote (').

DQ Represents one double-quote (").

asterisk (*) Represents zero or more occurrences of the previous expression.
plus (+) Represents one or more occurrences of the previous expression.

Elements and Content

All XML files consist of one or more elements. Eatdmenthas a case-insensitive hame and
a set of zero or mor&tributes Elements can, but are not required to hawe ent . Each
element is begun by ampeni ng t ag with the following form:

"<" SP* nane SP* attribute* Spr ">"

The content field follows the opening tag. Content fields are free form and all characters are
retained, including whitespace. The content of one element can be, and frequently is, one or
more child elements. This containership is arbitrarily deep and is defined by the specific XML
format being used. The content field is terminated dlyoai ng t ag of the following form:

"</" SP* nanme SP* ">"

Because the content field is optional, it is frequently empty. A second form of opening tag is
allowed, which indicates the absence of a content field:

"<" SP* nane SP* attribute* SP* "/>"

Attributes

As noted above, an element can have zero or more attributes. Attributes are always key-value
pairs, and the value is always a quoted string. Attribute keys are always alphanumeric, and,
like element names, are not case-sensitive. Attributes have the following form:

SP+ key SP* "=" SP* QJ value QU

Chapter 5: Introducing the Cobalt Configuration Engine

Comments

In addition to elements, XML files can includerment s. Comments can be outside of any
element or in the content of any element. Comments begin with thegtringind end with
the string- - >. Any text within a comment is ignored.

Escape Sequences

Because some characters, such asd> are used by the XML language itself, it is necessary
to use an alternate sequence of characters, called an escape sequence, to represent these
reserved characters. The following escape sequences are recognized by XML.:

Table 5-3 XML Escape Sequences

Literal Character Escape Sequence

< (less-than) <

> (greater-than) >

& (ampersand) &

> (apostrophe) '

" (quote) "

(space)
Sample XML

<l-- This is a sanple XM. file, illustrating syntax -->

<XM_H enent NAME="Sanpl e" >
<SubH enent nane="Sub Sanple 1">
This is & t;content> for a " SubE enent " ;
</ SubEl enent >

<SubEl enent Nane = "Sub Sanpl e 2" Col or="green"></ SubEl enent >

<SubHE enent

Narre="Sub Sanple 3" Note = "&anp;"/>
</ XM_H enent >

Chapter 5: Introducing the Cobalt Configuration Engine 5—9

Schema Syntax

Schema definition files can include any of the following elements:
e SCHEMA
* CLASS
* PROPERTY
* TYPEDEF

Syntax: SCHEMA

A SCHEMA is provided to identify a complete schema definition to the system. This element
provides such information as schema name, vendor, version, and any other information a
vendor might find useful to store with their schema definition. All child elements of a schema
are grouped together by the schema definition.

If no SCHEMA element is defined, or other top-level elements are defined, the non-schema-
wrapped elements of the description file are assumed to be part of a schelevEbt to

the current filename (minus thechena extension), and#ENDOR andVERSI ON set to the

empty string (""). Sun Cobalt recommends that every schema description file contain explicit
SCHENA elements, rather than rely on the default behavior.

El erent name: " SCHEMA'

Required attributes: "NAVE', "VENDCR', "VERSI ON'
ptional attributes: any

Requi red content: none

ptional content: "CLASS' or "TYPEDEF' el ements

Valid Parents: none

Table 5-4 SCHEMA Attributes

Attribute Description

NAVE The vendor-assigned name of the schema. This can be any string.
VENDOR The unique name of the schema’s vendor. This can be any string.

VERSI ON The vendor-assigned version of the schema. This can be any string, but by

convention is an integer or floating point number for example: "1" or
"3.1415".

5—10

Chapter 5: Introducing the Cobalt Configuration Engine

Syntax: CLASS

A CLASS is the formal definition of an object’s structure. An object has all the properties of its
CLASS, and only the properties of iti ASS.

El enent nane: "CLASS'

Required attributes: "NAVE', "VERSH QN'
ptional attributes: "NAMVESPACE'

Requi red content: none

ptional content: "PROPERTY' el enents
Valid Parents: "SCHEMVA'

Table 5-5 CLASS Attributes

Attribute Description

NANE The unique name of the class being defined or the name of the class being
extended. This must be a C-style symbol, that is, it must start with a letter or
underscore (_), followed by any number of letters, digits, or underscores. NAMVE
should, per convention, start with an upper-case letter, for example: "Foo".

VERSI ON The version number of this class structure. This can be any string, but by
convention is an integer or floating point number for example: "1" or "3.1415".
NANMESPACE The optional name of the namespace being defined for the specified CLASS. This

follows the same rules as NAME, with the exception that NAMESPACE can be a
blank string ("), or be unspecified.

Syntax: PROPERTY

A PRCPERTY is a sub-element of @LASS. A singlePROPERTY defines a single datum.
CLASSES get their utility from theiPROPERTY elements.

E enent nane: " PRCPERTY"

Required attributes: "NAME', "TYPE'

ptional attributes: "DEFAULT', "CPTIONAL", "ARRAY', "READACL",
"WR TEACL"

Requi red content: none

ptional content: none

Valid Parents: "CLASS'

Chapter 5: Introducing the Cobalt Configuration Engine 5—11

Table 5-6 PROPERTY Attributes

Attribute

Description

NAME

The name of the property. This must be a C-style symbol. See “Syntax:
CLASS” on page 5-10 syntax for the NAME attribute. All properties
beginning with an underscore (_) are reserved for future use.

TYPE

The data type of the property. This must be a valid TYPEDEF name. Type
bindings are resolved after all schemas are loaded, so you can use a

t ypedef before it is defined. A PROPERTY with a TYPE that does not
exist will fail all data validation.

DEFAULT

The default value of the property, used when the property is unassigned. This
can be any value that is valid for the specified TYPE. If DEFAULT is
unspecified, the default value is an empty string (""), which might be valid
for the PROPERTY.

CPTI ONAL

Defines whether the property can be the empty string ("") in addition to a
valid datum. This can be any string or unspecified. If unspecified or assigned
the value "" or "0" (zero), the optional flag is set to false; otherwise, the
optional flag is set to true.

ARRAY

Defines whether the property is an array of the specified TYPE. This can be
any string or unspecified. If unspecified or assigned the value "" or "0"
(zero), the array flag is set to false; otherwise, the array flag is set to true.
When set to true, data for this property is assumed to be an unbounded array
of data of the type specified.

READACL

Defines the read access rule list for the property. This is a comma or space
delimited list of security rules. If left blank or unspecified, the default value
isrul eUser.

VRl TEACL

Defines the write access rule list for the property. This is a comma or space
delimited list of security rules. If left blank or unspecified, the default value
is rul eAdmi n.

5—12

Chapter 5: Introducing the Cobalt Configuration Engine

Syntax: TYPEDEF

A TYPEDEF is a mechanism to build on the basic data typing provided by CCHREDEF is
a symbolic name given to a definition of a type and is used®PBgRERTY to validate its data.

El enent nane: " TYPEDEF"

Required attributes: "NAVE', "TYPE', "DATA"
ptional attributes: "ERRVEG

Requi red content: none

Valid content: none

Valid Parents: "SCHEMA"
Table 5-7 TYPEDEF Attributes

Attribute Definition

NANE The symbolic name for the type. This must be a C-style symbol. See
“Syntax: CLASS” on page 5-10 syntax for the NAME attribute.

TYPE The validation class for the TYPEDEF. This must be either r € or ext er n.

DATA The TYPE appropriate data validator. For re TYPES, it should be a valid

regular expression. For ext ern TYPES, it should be the path to an external
program. The program should read the data from standard input, and return 0
if the data is valid or non-zero if it is invalid.

ERRMSG The error message returned by CCE when invalid data is written to an

instance of this TYPEDEF. This can be any string or unspecified.

Sample Schema Definition File

<SCHEMA
NAVE=" Sanpl e Scherma"
VENDOR="Sun M cr osyst ens"
VERSI ON="3. 1415" >

<l-- Sone classes, properties, namespaces, and types -->
<CLASS nane="Sanpl ed ass" versi on="12345">

<PRCPERTY nare="narme" type="sanpl e_type" defaul t="new'/>
</ CLASS>

Chapter 5: Introducing the Cobalt Configuration Engine 5—13

<CLASS nane="Sanpl ed ass" nanmespace="Deno" versi on="6. 02e23" >
<PRCPERTY nane="nane" type="sanpl e_type" defaul t="123"/>
</ CLASS>

<TYPEDEF nanme="sanpl e_type" type="re" data="[A- Za-z0-9]*" />

<CLASS nane="Sanpl ed ass2" version="2.7183">
<PRCPERTY

nanme="nane"

type="f oo_t ype"

def aul t =" new'

opti onal ="1"

readacl ="rul eAdm n" wri teacl ="rul eAdm n"
/>

</ CLASS>

<TYPEDEF

nane="f oo_t ype"

type="re" dat a="[A- Za- z0- 9] *"

errnsg="Yowi e! You can't do that with a foo_type!"
/>

</ SCHEMA>

Handler Registration

The format of a CCE handler configuration fiter(f) is very simple with two or three
whitespace-delimited fields per line, and one or more lines per file. Each line has the
following format:

5—14 Chapter 5: Introducing the Cobalt Configuration Engine

event <whitespace> handl er <whitespace> stage

Any line that begins with a hash)(or is blank is ignored.

Events

The event field defines the circumstances upon which the handler is run. The event field
follows the form:

cl ass. property

This registers the specified handler to run whenever the specified class property is modified.
To register a handler on an object’s creation or destruction, use the special properties
_CREATE or _DESTROY. To register a handler on the modification of any property of a class,
use the special property (asterisk).

Table 5-8 Valid Events

Event Condition

_CREATE When an object of the specified class is created.

_DESTROY When an object of the specified class is destroyed.

pr opertynane When the specified property of the specified class is modified.

* When any property of the specified class is modified.

Chapter 5: Introducing the Cobalt Configuration Engine 5—15

Handlers

The handler field defines the type of handler and the type-specific handler details. It has the
form:

type: detail s

The details of the handler depend on the type specified. The following types are available:
* exec, which executes the file named in the detalils field.

* perl, which sends the Perl script named in the details field through a persistent Perl
process, for improved Perl performance.

* test, which sends the contents of the details field to the standard output of CCEd.

Forexec andper| type handlers, which have a path name in the details field, some path
expansion is performed. If the details field is a relative path (does not start initthe
default handler pathusr/ sausal i t o/ handl ers/ is prepended to the detalils field.

Stages

All handlers are run in one of several stages and can thereby ensure some relative ordering.
The available stages avAL| DATE, CONFI GURE, EXECUTE, TEST, andCLEANUP. The stage

field is optional, and if left off, is assumed toBXECUTE. Since handlers within a stage are

not guaranteed to run in any specific order, a single application can register multiple handlers
in each stage. Each stage’s name suggests what it can be used V&L [T E stage, for
example, should be used by handlers that do not make any changes, but instead verify that th
requested event can be performed.

The final stageCLEANUP, is meant for handlers that can not be undone. Handlers that register
for this stage must not exit with a failure status, or the system can be left in an inconsistent anc
unrecoverable state.

File Naming

When searching for handler registration files, CCEd will do a recursive search of the handler
configuration directory. By default, this directory issr/ sausal i t o/ conf , but can be

specified with the c option to CCEd, see “CCEd Command-Line Parameters” on page 5-5.
All files that end with conf are parsed as handler registration files. The only exception to
this is that any file or directory that begins with a @9ts ignored.

5—16 Chapter 5: Introducing the Cobalt Configuration Engine

Sample Handler Registration File

Register handlers for dass from Avendor

d ass. _CREATE exec:/opt/Avendor/ d ass/ d ass_create configure
d ass. _DESTROY exec:/usr/sausalito/handl ers/d ass_destroy test

d ass. * exec: Avendor/ d ass/ d ass_nod

d ass. property perl:/usr/sausalito/bin/dass_prop.pl val i date

CCE Libraries

In order to make CSCP easier for programmers to use, code libraries are provided in several
popular languages: C, Perl, and PHP. These libraries insulate the users from the details of the
CSCP protocol, and perform all the necessary conversions and transformations of data. The
libraries are used both in the construction of the new user clients to the CCE server and to
create handlers that extend the functionality of the CCE system.

All the libraries are similar in build and syntax, though there are minor variations among them
to accommodate for language-specific feature sets. Each library builds functional wrappers
around CSCP commands, as well as providing higher-level functions for common tasks.

These libraries are under constant development and will grow and evolve. As the libraries
grow, some aspects of the library interfaces will inevitably become deprecated. All deprecated
features will be retained for some time, for compatibility, but will eventually be removed from
the libraries, so it is essential that new development not rely on deprecated features.

The C language library for CCE is, of course, available for C programmers. The C library can
also be used as the basis for bindings in other languages, such as PHP, to access CSCP. Thi
library uses some opaque type and several accessor functions for those types. If you are
familiar with object-oriented programming in languages such as Java or C++, you can think of
these as methods for a class.

Chapter 5: Introducing the Cobalt Configuration Engine 5—17

Dependencies and Headers

The header files fdri bcce are found inf usr/ sausal i t o/ i ncl ude, which should be
specified as part of a client applications include search path. The only hedddsdile
applications need to include<dsce/ cce. h>. This header includes anything else it needs. In
addition to this headerj bcce has one dependency, a library cali¢db. When compiling

an application that linkisi bcce, you also need to lingl i b. To linkgl i b andl i bcce
successfully with your program, Sun Cobalt suggests adding the following options to your
build process:

* When compiling, specify the following as part of your build string:
-1/usr/sausalito/include ‘glib-config --cflags
* When linking, specify the following as part of your link string:

-L/usr/sausalito/lib ‘glib-config --libs" -lcce

Note that in both of the suggested strings, the quotations are back-quotes, not apostrophes.

Datatypes

Data structures are fundamental to usingcce. Several datatypes are defined by the CCE
library.

Struct: cce_error_t

This is a transparent structure, used to hold information about an error condition. The data
members of this structure are:

* cscp_oid_t oid: The object ID for which an error occurred.
* char *key: The property for which an error occurred (may be NULL).

e char *nessage: The error condition.

Struct: cce_handle _t

This opague structure holds all the information about a connection to CCE. Almost every
I'i bcce function needs a pointer tacae_handl e_t structure to be passed in.

5—18

Chapter 5: Introducing the Cobalt Configuration Engine

Enum: cce_handler_ret

This datatype is an enumeration of values for handlers to indicate success or failure. Values
for this enumeration are directly related to CSCP values f@vhecommand. The following
are valid values:

e CCE_SUCCESS
e CCE FAIL
e CCE_DEFER

Struct: cce_props_t

This opaque structure holds all the properties of a CODB object. Because it is opaque, severa
accessor functions have been provided. See “Enum: cce_props_state t".

Enum: cce_props_state t
This is an enumeration of state informationdoe_pr ops_t structures. Every
cce_props_t structure can represents a CODB object in one of various states:
e CCE_NONE
* CCE_MODI FI ED
* (CCE_CREATED
® CCE_DESTROYED

This information can be very useful to event handlers.

Typedef: cscp_oid_t

This type represents a CSCP object ID (OID). It is used to uniquely identify CODB objects in
all i bcce functions. This is an integral type; do not make assumptions about whether it is
signed or unsigned.

Chapter 5: Introducing the Cobalt Configuration Engine 5—19

Functions

Functions within i bcce can be broken down into three major categories: CSCP commands,
accessor functions for datatypes, and utility functions. First let's examine CSCP command
functions. For more information on CSCP, see Appendix E, “Cobalt System Configuration
Protocol”. All of these functions, unless otherwise noted, are available to both handlers and
client applications.

char *cce_auth_cmd(cce_handl e_t *handle, char *user, char *pass);

Description: This function is used to authenticate to CCE. The provided username and
password are evaluated and an authentication key is returned. This function is available to
handlers that want to change their authentication state. Handlers, by default, begin their
sessions authenticated with full privileges

Parameters:
handl e: A pointer to the currently-connected CCE handle.
user : A pointer to the authenticating username string.
pass: A pointer to the authenticating password string.

Returns: A pointer to the authentication key string on success; NULL on failure

int cce_authkey _cmmd(cce_handl e_t *handl e, char *user, char *key);

Description: This function is used to reauthenticate to CCE. When caliagaut h_cmmd, a
pointer to an authentication key is returned. This function acceptsuthaitey in place of a
password. Likece_aut h_cmmd, this function is not needed by most handlers

Parameters:
handl e: A pointer to the currently-connected CCE handle.
user : A pointer to the authenticating username string.
key: A pointer to the authentication key.

Returns: A positive integer on success; NULL on failure

5—20

Chapter 5: Introducing the Cobalt Configuration Engine

int cce_bye_cmmd(cce_handl e_t *handl e);

Description: This function is used by a client application to terminate the CCE session. It
terminates the CSCP connection and frees any internal structures of the passed
cce_handl e_t . This function is strictly for non-handler use. Note the presence of
cce_bye_handl er _cnd for use by handler applicatians

Parameters:
hand! e: A pointer to the currently-connected CCE handle.

Returns: A positive integer on success; NULL on failure

int cce_connect_cmmd(cce_handl e_t *handl e, char *path);

Description: This function initiates a CSCP connection to CCE. Once connected, the passed
cce_handl e_t is initialized. Thepat h parameter is optional, and ifgad NULL, defaults to
/usr/sausal i t o/ cced. socket . This function is strictly for non-handler use. Note the
presence ofce_connect _handl er _crmd for use by handler applicatians

Parameters:
handl e: A pointer to the currently-connected CCE handle.
pat h: The file path to the CCE UNIX Domain Socket (NULL = default).

Returns: A positive integer on success; NULL on failure

cscp_oid_t cce_create_cmd(cce_handle_t *handle, char *class, cce_props_t
* .
props);

Description: This function is used to create a new CODB object of the specified class. The
initialized values for the new object is taken from the passedor ops_t .

Parameters:
handl e: A pointer to the currently-connected CCE handle.
cl ass: A pointer to the class name string.

props: A pointer to acce_props_t holding initial values for the new object, or NULL for
no initialized values.

Returns: A cscp_oi d_t representing the new object ID on success; NULL on failure

Chapter 5: Introducing the Cobalt Configuration Engine 5—21

int cce_destroy_cmmd(cce_handl e_t *handle, cscp_oid_t oid);
Description: This function attempts to destroy the CODB object specified by the psissed
Parameters:
hand! e: A pointer to the currently-connected CCE handle.
oi d: The object ID of the desired object.

Returns: A positive integer on success; NULL on failure

int cce_endkey_cmmd(cce_handl e_t *handl e);

Description: This function requests that CCE immediately end the period of validity for the
current session’s authentication key

Parameters:
hand! e: A pointer to the currently-connected CCE handle.

Returns: A positive integer on success; NULL on failure

GSLi st *cce_find_cmmd(cce_handl e_t *handl e, char *class, cce_props_t *props);

Description: This function performs a search of CODB for an object or list of objects that
match the specified criteria properties. The returned list is not guaranteed to be in any
predictable order

Parameters:
hand! e: A pointer to the currently-connected CCE handle.
cl ass: A pointer to the class name string.
props: A pointer to the properties structure holding the search criteria.

Returns: A pointer to aGSLi st of cscp_oi d_t items; NULL if no objects match the
specified criteria

5—22 Chapter 5: Introducing the Cobalt Configuration Engine

GSLi st *cce_find_sorted_cmd(cce_handl e_t *handl e, char *class, cce_props_t
*props, char *sortkey, int sorttype);

Description: This function, likecce_fi nd_crnnd, performs a search of the CODB. Unlike
cce_find_cmd, however, this function returns its data in a sorted order

Parameters:
hand! e: A pointer to the currently-connected CCE handle.
cl ass: A pointer to the class name string.
props: A pointer to the properties structure holding the search criteria.

sort key: A pointer to thepr oper t y ornamespace. property string upon which to sort
the data.

sorttype: An integer representing which sort method to apply: 0 = alphanumeric sort,
1 = numeric sort.

Returns: A pointer to aGSLi st of cscp_oi d_t items; NULL if no objects match the
specified criteria

cce_props_t *cce_get_cmd(cce_handle_t *handle, cscp_oid_t oid, char
*nanmespace) ;

Description: This function attempts to retrieve the contents of the specified CODB.object
Parameters:

handl e: A pointer to the currently-connected CCE handle.

oi d: The object ID of the desired object.

nanespace: The namespace to retrieve; NULL for no namespace.

Returns: A pointer to acce_props_t structure holding the representation on the requested
object on success; NULL on failure

Chapter 5: Introducing the Cobalt Configuration Engine 5—23

GSLi st *cce_names_cl ass_cmd(cce_handl e_t *handl e, char *cl ass);

Description: This function retrieves the list of namespaces available for a specified CODB
class

Parameters:
hand! e: A pointer to the currently-connected CCE handle.
cl ass: A pointer to the class name string.

Returns: A pointer to aGSLi st of char * items; NULL if the class has no hamespaces

GSLi st *cce_names_oi d_cmd(cce_handle_t *handl e, cscp_oid_t oid);

Description: Like cce_nanes_cl ass_cmmd, this function gets the list of available
namespaces for a class. However, this function accepts a particular object ID, rather than a
class name

Parameters:
hand! e: A pointer to the currently-connected CCE handle.

Returns: A pointer to aGSLi st of char * items; NULL if the object has no namespaces

int cce_set_cmd(cce_handl e_t *handle, cscp_oid_t oid, char *nanespace,
cce_props_t *props);

Description: This function attempts to set the specified properties in the specified CODB
object

Parameters:
handl e: A pointer to the currently-connected CCE handle.
oi d: The object ID of the desired CODB object.
nanespace: A pointer to the namespace string; NULL for no namespace.
props: A pointer to the properties structure holding the new values for the object.

Returns: A positive integer on success; NULL on failure

5—24 Chapter 5: Introducing the Cobalt Configuration Engine

cscp_oid_t cce_whoam _cmd(cce_handl e_t *handl e);
Description: This function returns the object ID of the currently-authenticated session
Parameters:
hand! e: A pointer to the currently-connected CCE handle.
oi d: The object ID of the desired CODB object.
nanespace: A pointer to the namespace string; NULL for no namespace.
pr ops: A pointer to the properties structure holding the new values for the object.

Returns: The object ID of the user authenticated in the current session

int cce_bad_data_cmd(cce_handl e_t *handl er, cscp_oid_t oid, char *nanespace,
char *key, char *reason);

Description: This function allows a handler to report a problem with a specific piece of data
to CCE

Parameters:
handl er : A pointer to the currently-connected CCE handle.
oi d: The object ID in question.
nanmespace: A pointer to the namespace string in question.
key: A pointer to the property name string in question.
reason: A string explanation of the problem.

Returns: A positive integer on success; NULL on failure

Chapter 5: Introducing the Cobalt Configuration Engine 5—25

int cce_bye_handl er_cmmd(cce_handl e_t *handl e, cce_handl er_ret status, char
*nmessage) ;

Description: This function provides a handler-specific method of terminating a CCE
connection. Handlers can exit with multiple success values. These values are important to
CCE to know whether a handler has failed

Parameters:
hand! e: A pointer to the currently-connected CCE handle.
st at us: A symbolic exits status.
message: An optional message for a failure exit status.

Returns: A positive integer on success; NULL on failure

cscp_oid_t cce_connect _handl er_cmmd(cce_handl e_t *handl e);

Description: This function, for use by handlers, is analogous to

cce_connect _handl er _cnnd. The reason for the distinction is in how handlers connect to
CCE. This function connects the CSCP file descriptor usédHtxce to st di n andst dout

of the calling program

Parameters:
hand! e: A pointer to the currently-connected CCE handle.

Returns: A positive integer on success; NULL on failure

GSLi st *cce_l ast_errors_cmmd(cce_handl e_t *handl e);

Description: This function retrieves a list of errors and warnings for the most recent CCE
command. While not truly a CSCP command, this function allows developers to access the
error state of a CSCP connection

Parameters:
handl e: A pointer to the currently-connected CCE handle.

Returns: A pointer to aGSLi st of CCE error structures on success; NULL on failure or if no
errors or warnings are found

5—26 Chapter 5: Introducing the Cobalt Configuration Engine

NOTE: In addition to the CSCP command functionsycce provides several
accessor functions for the various datatypes used throughout.

cce_handl e_t *cce_handl e_new(void);

Description: This function is used to create a new, disconneatedhandl e_t structure. To
destroy a handle created by this function atse handl e_dest r oy.

Parameters: None.

Returns: A pointer to a new CCE handle on success; NULL on failure

voi d cce_handl e_destroy(cce_handl e_t *handl e);

Description: This function is the complement toe_handl e_new. It frees any resources
allocated by the CCE handle. If the handle is connectedpye_crnmd or
cce_bye_handl er _cmmd should be called first

Parameters:
handl e: A pointer to the CCE handle to be destroyed.

Returns: Nothing

int cce_props_count(cce_props_t *props);

Description: This function returns the number of properties stored in a CCE properties
structure

Parameters:
props: A pointer to the CCE properties structure.

Returns: An integer value representing the number of properties currently stored

Chapter 5: Introducing the Cobalt Configuration Engine 5—27

voi d cce_props_destroy(cce_props_t *props);

Description: This function is the complement ¢tee_pr ops_new It is used to release
resources used by a properties structure

Parameters:
pr ops: A pointer to the CCE properties structure.

Returns: Nothing

char *cce_props_get(cce_props_t *props, char *key);

Description: This function retrieves a pointer to a string, stored internally to the
cce_props_t, representing the value of the property requested

Parameters:
props: A pointer to the CCE properties structure.

Returns: A pointer to the value string on success; NULL on failure or if the requested
property is not found

char *cce_props_get _new(cce_props_t *props, char *key);

Description: Because a CODB object, during a transaction, can have both changed (new) and
old propertiesl i bcce provides a way to access both. This function gets values only from the
list of properties marked as changed (new)

Parameters:
pr ops: A pointer to the CCE properties structure.
key: The name of the desired property.

Returns: A pointer to the value string on success; NULL on failure or if the requested
property is not found

5—28 Chapter 5: Introducing the Cobalt Configuration Engine

char * cce_props_get_ol d(cce_props_t *props, char *key);

Description: Like cce_props_get _new, this function differentiates old and new data. This
function only gets values from the unchanged (old) values list

Parameters:
pr ops: A pointer to the CCE properties structure.
key: The name of the desired property.

Returns: A pointer to the value string on success; NULL on failure or if the requested
property is not found

cce_props_t *cce_props_new voi d);
Description: This function is used to allocate a new CCE properties structure
Parameters: None.

Returns: A pointer to a new CCE properties structure on success; NULL on failure

char *cce_props_nextkey(cce_props_t *props);

Description: This function provides the ability to iterate over the items stored in a CCE
properties structure. It retrieves the next property name in the internal queue

Parameters:
pr ops: A pointer to the CCE properties structure.

Returns: A pointer to the next property name string on success; NULL on failure

voi d cce_props_reinit(cce_props_t *props);

Description: The CCE properties structure has some iteration primitives. This function is
used to reinitialize the iteration primitives

Parameters:
props: A pointer to the CCE properties structure.

Returns: Nothing

Chapter 5: Introducing the Cobalt Configuration Engine 5—29

voi d cce_props_set(cce_props_t *props, char *key, char *val ue);

Description: This function sets the specified property to the specified value. If the property
was previously set, the old value is overwritten by the new value

Parameters:
pr ops: A pointer to the CCE properties structure.
key: The property name to set.
val ue: A pointer to a string value to store.

Returns: Nothing

voi d cce_props_set_ol d(cce_props_t *props, char *key, char *val ue);

Description: This function, likecce_pr ops_set, sets a property to a new value. Like
cce_props_get _ol d, this function accesses only the property set that is marked as
unchanged

Parameters:
props: A pointer to the CCE properties structure.
key: The property name to set.
val ue: A pointer to a string value to store.

Returns: Nothing

cce_props_state_t cce_props_state(cce_props_t *props);

Description: This function retrieves the current state of the CCE properties structure. For
details on the valid return values, see “Enum: cce_props_state_t” on page 5-18

Parameters:
props: A pointer to the CCE properties structure.

Returns: A cce_props_state_t that identifies the current state of the CCE properties
structure

5—30 Chapter 5: Introducing the Cobalt Configuration Engine

NOTE: The last set of functions provided biybcce are the utility functions.
These are all helper functions to make various common activities simpler.

GSLi st *cce_array_deserial (char *str);

Description: This function takes a pointer to a CCE internal array representation and turns it
into a linked list

Parameters:
str: A pointer to a CCE internal array string.

Returns: A pointer to aGSLi st of strings on succesSIULL on failure

void cce_list_destroy(GSList *list);

Description: This function is used to freeGsLi st of data. All elements and their data is
freed

NOTE: Do notcall this function with memory that is not dynamically allocated.

Parameters:
I'i st: A pointer to thesSLi st to be freed.

Returns: Nothing

cscp_oid_t cscp_oid_fromstring(char *string);

Description: This function is used to read a string representatiorceé@ oi d_t and
convert it to a readscp_oi d_t representatian

Parameters:
string: The string representation of the object ID.

Returns: Thecscp_oi d_t representation on success; NULL on failure

Chapter 5: Introducing the Cobalt Configuration Engine 5—31

char *cscp_oid_to_string(cscp_oid_t oid);

Perl

Description: This function is used to create a string representatiorc®ém@ oi d_t from a
realcscp_oi d_t representatian

Parameters:
oi d: The object ID of the desired object.

Returns: The string representation on success; NULL on failure

The Perl form of i bcce implements an object-oriented interface. The same interface is used
for communicating with CCEd both in the context of a client, such as a user interface, and in
the context of an event handler.

Module

The Perl library is located itusr/ sausal i t o/ per | / GCE. pm This directory should be
included on the perl command line, for example:

#! /usr/bin/perl -1/usr/sausalitolperl

To include the CCE module in your perl program, add this line to the top of your program:
use CCE

Creating a New Object

To begin usingd i bcce in Perl, you must first create a CCE handle. This is analogous to the C
library functionality. To create a new CCE object, use the following statement:

ny $cce = new CCE;

5—32 Chapter 5: Introducing the Cobalt Configuration Engine

Methods

All the functionality of the Petli bcce is provided as object methods of the CCE class.

$ok = $cce->aut h($usernane, $password);
Description: This method is used to authenticate to CCE
Parameters:
$user nanme: The username for authentication.
$passwor d: The password for authentication.

Returns: A boolean success cade

$ok = $cce->aut hkey($usernanme, $sessionid);
Description: This method is used to resume a session or reauthenticate to CCE
Parameters:
$user name: The username for authentication.
$sessi oni d: The sessionid for authentication.

Returns: A boolean success cade

$ok = $cce->bye(S$status);

Description: This method is used to end a CCE session. The optional status parameter is usec
by handlers to indicate one of the exit status conditions. See “Enum: cce_handler_ret” on
page 5-18

Parameters:
$status: The exit status (handlers only).

Returns: A boolean success cade

Chapter 5: Introducing the Cobalt Configuration Engine 5—33

($ok, @l asslist) = $cce->cl asses();
Description: This method retrieves a list of classes known by CCE
Parameters: None.

Returns: A boolean success code or a list of classes.

$ok = $cce->connect uds($fil enane);

Description: This method is used exclusively by client applications (not handlers) to connect
to CCE. If specified, the filename parameter identifies the UNIX domain socket to open,
otherwise the sockéusr/ sausal i t o/ cced. socket is assumed

Parameters:
$fil enane: The (optional) name of a UNIX domain socket.

Returns: A boolean success cade

($ok, $badkeys, @nfo) = $cce->create($class, \%object);

Description: This method is used to create a new CODB object. The provided object hash is
used as the initial values for the new object. The object ID of the new object can be retrieved
by a call to thei d method

Parameters:
$cl ass: The class name to create.
\ %bj ect : A reference to the hash of values with which to initialize the object.

Returns: A boolean success code, a hash reference of bad values, where the key is property
name, and the value is the reason, or a list of informational and warning messages issued by
CCE or handlers

5—34 Chapter 5: Introducing the Cobalt Configuration Engine

($ok, @nfo) = $cce->destroy($oid);
Description: This method is used to destroy a CODB object
Parameters:
$oi d: The object ID to destroy.

Returns: A boolean success code or a list of informational and warning messages issued by
CCE or handlers

$ok = $cce->endkey();
Description: This method is used to immediately end the validity of the cuaxerikey.
Parameters: None.

Returns: A boolean success cade

@idlist = $cce->find($class, \%riteria);

Description: This method searches all instances of the specified class for instances that match
the specified criteria

Parameters:
$cl ass: The class for which to search.
\o%riteria: A reference to a hash of property criteria.

Returns: A list of object IDs that match the criteria

Chapter 5: Introducing the Cobalt Configuration Engine 5—35

@i dlist = $cce->findNSorted($cl ass, $key, \%riteria);

Description: This method searches all instances of the specified class for instances that match
the specified criteria. The resulting list is sorted numerically by the specified key property

Parameters:
$cl ass: The class for which to search.
$key. The property name upon which to sort.
\o%riteria: Areference to a hash of property criteria.

Returns: A list of object IDs that match the criteria

@i dlist = $cce->findSorted($class, $key, \%riteria);

Description: This method searches all instances of the specified class for instances that match
the specified criteria. The resulting list is sorted alphabetically by the specified key property

Parameters:
$cl ass: The class for which to search.
$key. The property name upon which to sort.
\o%riteria: A reference to a hash of property criteria.

Returns: A list of object IDs that match the criteria

5—36 Chapter 5: Introducing the Cobalt Configuration Engine

($ok, $object, $old, $new) = $cce->get($oi d, $namespace);

Description: This method is used to fetch all of the attributes of a namespace or property
from CODB. If the namespace is unspecified, the main namespace is retrieved

Parameters:
$oi d: The desired object ID.
$namespace: The desired namespace name.

Returns: A boolean success code, a reference to a hash of the requested properties, a
reference to a hash of the previous values of any changed properties, if applicable, or a
reference to a hash of the changed values of the property set, if applicable

($ok, @anelist, @nfo) = $cce->nanes($oid);

Description: This method is used to fetch the names of all of the namespaces for a particular
object ID.

Parameters:
$oi d: The desired object ID.

Returns: A boolean success code, a list of namespaces, or a list of informational and warning
messages issued by CCE or handlers

(%ok, $badkeys, @nfo) = $cce->set($oid, $nanmespace, \%properties);

Description: This method sets the properties in a CODB object or namespace to the
properties specified. If the namespace is not specified, the main namespace is used

Parameters:
$o0i d: The desired object ID.
$namespace. The desired namespace name.
\ %r operti es: A reference to a hash of properties and values.

Returns: A boolean success code, a list of namespaces, or a list of informational and warning
messages issued by CCE or handlers

Chapter 5: Introducing the Cobalt Configuration Engine 5—37

(ok, Sauth_oid) = $cce->whoami ();
Description: This method gets the object ID of the currently-authenticated user
Parameters: None.

Returns: A boolean success code or the authenticated object ID

NOTE: Like the C library, there are a few functions that are applicable only to
handlers.

$ok = $cce->baddat a($oi d, $key, $nsg);

Description: This method is used exclusively by handlers to alert CCE and the calling client
to a data error

Parameters:
$oi d: The object ID in question.
$key: The property in question.
$nsg: The reason or explanation of the error.

Returns: A boolean success cade

$ok = $cce->connectfd($readfd, Switefd);

Description: This method is used exclusively by handlers to connect their input and output
file descriptors to CCE. If theeadf d orwri t ef d parameters are omitted,
\ *STDI Nand \ * STDOUT are assumed, respectively

Parameters:
$readf d: The standard input file descriptor.
$wri t ef d: The standard output file descriptor.

Returns: A boolean success cade

5—38 Chapter 5: Introducing the Cobalt Configuration Engine

$ok = $cce->i nf o($nsQ);

Description: This method is used exclusively by handlers to issue an informational message
to CCE and the calling client

Parameters:
$nsg: The message to pass.

Returns: A boolean success cade

$ok = $cce- >war n($nsQ) ;

Description: This method is used exclusively by handlers to issue a warning message to CCE
and the calling client

Parameters:
$nsg: The message to pass.

Returns: A boolean success cade

NOTE: Like the C version ofi bcce, the Perl library also provides several
support and data-access methods.

$oid = $cce->0i d();
Description: This method is used to access the most recently created or found object ID
Parameters: None.

Returns: The most recent object ID

Chapter 5: Introducing the Cobalt Configuration Engine 5—39

$oi d

$oid =

$oi d

$oi d

$cce->event _oid();

Description: This method is used to access the object ID that triggered the current handler. It
is meaningless in client applications

Parameters: None.

Returns: A reference to the event-triggering object ID

$cce- >event _nanespace();

Description: This method is used to access the namespace that triggered the current handler.
It is meaningless in client applications

Parameters:None.

Returns: A reference to the event-triggering namespace

$cce->event _property();

Description: This method is used to access the property that triggered the current handler. It
is meaningless in client applications

Parameters:None.

Returns: A reference to the event-triggering property

$cce->event _object();

Description: This method is used to access the hash of properties representing the object that
triggered the current handler. It is meaningless in client applications

Parameters:None.

Returns: A reference to the event-triggering object hash

5—40 Chapter 5: Introducing the Cobalt Configuration Engine

$oid = $cce->event ol d();

Description: This method is used to access the hash of changed properties of the object that
triggered the current handler. It is meaningless in client applications

Parameters: None.

Returns: A reference to the event-triggering changed properties hash

$oid = $cce->event _new);

Description: This method is used to access the hash of changed properties of the object that
triggered the current handler. It is meaningless in client applications

Parameters:None.

Returns: A reference to the event-triggering changed properties hash

Public Methods for CCEClient (PHP)

Unfortunately, product schedules did not allow Sun Cobalt to complete this section. To see
examples of this code, look/aisr/ Sausal i t o/ ui / web.

Chapter 6

Making Qube 3 Software Architecture-Aware
Applications

Chapter Contents

Making Qube 3 Software Architecture-Aware Applications
Making your Application into a Package
Introducing Slush Barn, a “Real-World” Application

How to Install your Package File on the Sun Cobalt Qube 3 Server
Appliance

Package Structure

Making Qube 3 Software Architecture-Aware Applications

This chapter provides information on creating applications that run on the Sun Cobalt Qube 3
server appliance. To create an application, you must create a module that includes all the
components needed and structure it requires so that it can be easily installed by users, in a
package file format (. pkg). This chapter lists the fields that you need to include so that the
Sun Cobalt Qube 3 server appliance can display the appropriate information during the
installation process. It also describes the appropriate directories, files, and resources for your
application module.

6—2 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

About the Application Module

The application module is a self-contained bundle of files, directories, and resources required
for a new capability. Depending on the type of module you are creating, you choose the
appropriate level of integration. Some modules trigger both the user interface and the back-
end system; others are stand-alone modules.

New modules can contain any or all of the following code:

1. User interface (UI) modules
* UI pages built using UIFC.

* Navigation nodes, such as adding buttons and menu items.

The Web mail service that is displayed on the Sun Cobalt menu is an example of a service
that is integrated only with the user interface and uses IMAP as its back-end system. The
files for the user interface go into the ui directory. For more information about module
directory layout, see Table 62 on page 6-5.

2. Internationalization modules

* Internationalization resources to translate the user interface into other languages.

3. Back-end modules
* CCE configuration files.
* CCE handlers.

Adding a user to the Sun Cobalt Qube 3 server appliance is an example of an instance that
impacts only the back-end modules, where the existing user interface is used and the CCE
configuration files and handlers are invoked.

4. Binary modules

* Service binary and configuration files. For example, email modules have
SendMai | and Maj or dono binaries and modify the configuration files for these
binaries.

* Databases that register users as they are created and notify event handlers about
creating users. This type of module uses the existing user interface.

These modules can be manually installed and completely unintegrated to the Sun Cobalt
user interface (UI).

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—3

Naming Your Application Module

Developers must use unique vendor-specific names for modules to avoid name conflicts.

NOTE: Sun Cobalt uses base in its module names, for example,

base-devel . nod. Developers must differentiate their modules by naming
the modules with a distinctive name, preferably a name that reflects their
company or product, for example, vendor_name_module.

Building a New Service Module

A service module is a self-contained bundle of files or directories and resources required for a
new capability, for example, an e-commerce product or a system backup product. New
modules can contain any or all of the following:

Navigation nodes — ser vi ce. xni

User interface (UI) pages built using UIFC — ser vi ce. php
Internationalization resources — ser vi ce. po

CCE configuration files — ser vi ce. schenm, ser vi ce. conf
CCE handlers — ser vi ceMod. pl , servi ceMd. ¢

Service binaries and configuration — ser vi ced

NOTE: You can write handlers in any language. Sun Cobalt provides
bindings for C and Perl.

Sun Cobalt enabling tools include:

Standard directory structure document; see Figure 6—7 on page 6-23.

Build tools to create loadable module files (scripts and a Makefile).

6—4 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

Making your Application into a Package

This section describes the skeleton module for the Qube 3 software architecture. By
customizing the skeleton module for your needs, you can integrate seamlessly into the Sun
Cobalt configuration environment.

To build a service module:

1. Create handlers to interact with the Cobalt Configuration Engine (CCE). A
configuration file goes in gl ue/ conf ; the actual handlers go in gl ue/ handl er s.

2. Create any user interface components, if necessary. These include Web and menu page
descriptors, which go in the ui / web and ui / menu directories, respectively.

3. Write any | ocal e files; these go in the | ocal e directory.

4. Look att enpl at es/ spec. t npl andt enpl at es/ packi ng_list.tnpl.

NOTE: The default template to build RPM files is in

/usr/sausal ito/ devel /tenpl ates. If you want to modify these
templates, create a template directory in your module. Copy these files to
your template directory and modify them as needed.

5. Look at the top-level Makef i | e. Adjust the variables to fit your situation.

The default build targets are nake al | , make cl ean, make install,and make rpm

NOTE: A sample skeleton module is available in the Sun Cobalt Developer Web
page. Goto http://devel oper. cobal t.coni devnet/devtool s. ht m
for the code sample and Readme file.

Here’s some more information about the default make rules and expected file names:

Table 6-1 The top-level Makef i | e variables

Makefile Variables Description

VENDCR The vendor field for your module.

VENDORNAME The actual vendor name; this name can be the same as VENDOR.

SERVI CE The name for the service.

Chapter 6: Making Qube 3 Software Architecture-Aware Applications

Table 6-1 The top-level Makef i | e variables

Makefile Variables

Description

VERSI ON

Version number.

RELEASE

Release number.

BU LDARCH

Set to noar ch if you do not want platform-specific RPMs generated.

XLOCALEPAT

Set to a space-separated list of locale patterns to exclude.

BU LDUI

Packages all files in ui / web and ui / nenu.

BU LDLOCALE

Set to yes to build these components, create RPMs, and create a capstone
RPM.

BUI LDSRC

Build the files in the Sr € directory.

BU LDGLUE

If BUI LDGLUE is set to yes, packages all the handlers, object schemas,
configuration files for event triggers, and config files. If set to no,
BUI LDG_UE does no packaging.

DEFLOCALE

This locale is used for static HTML pages, for example, en or j a.

The BUI LD variables determine which directories to include when calling the cl ean,
i nstal |, and r pmtargets.

The default nake rules take the BUI LD? variables and build up ui , gl ue, and | ocal e RPMS,
if requested. If any of these RPMs are generated, a capstone RPM is created as well. A
capstone is a type of packing list for the RPMs.

Table 62 Module Directory Layout

Directories

Description

constructor

Capstone constructors.

destructor

Capstone destructors.

Handler and configuration modification code.

glue

ul

User interface and user interface menu code.

locale

Locale information and locale-specific Ul pages.

templates

User-modifiable template files used in packing list and RPM generation.

NIY

Sr ¢ directory (optional).

RPMS

RPMS directory (optional).

SRPMS

Source RPMS directory (optional).

Chapter 6: Making Qube 3 Software Architecture-Aware Applications

The default make rules expect the following file layout:

1. gl ue/conf/*

gl ue/ handl ers/ *
2. I ocal e/ | ocal eX/ $(SERVI CE) . po

3. ui/nmenu/*

ui / web/ *

4. constructor/*

destructor/*

The default make rules place these files in the following locations:

gl ue/ conf/* -> $(CCEDI R)/ conf / $(VENDOR) / $(SERVI CE) / *
gl ue/ handl ers/* -> $(CCEDI R)/ handl er s/ $(VENDOR) / $(SERVI CE) / *

| ocal e/ | ocal eX/ $(SERVI CE) . po - >
/usr/sharel/l ocal e/ | ocal exX/ LC_MESSAGES/ $(VENDOR) - $(SERVI CE) . np

ui / menu/* -> $(CCEDI R)/ ui / menu/ $(VENDOR) / $(SERVI CE) / *
ui /web/* -> $(CCEDI R)/ ui / web/ $(VENDOR) / $(SERVI CE) / *

constructors/* $(CCEDI R)/ const ruct or/ $(VENDOR) / $(SERVI CE) /
destructors/ $(CCEDI R)/destructor/$(VENDOR) / $(SERVI CE) / *

If your module does not contain compiled code, the above make rules should be all that you
need for building a service module. Otherwise, you need to know about a couple additional

make rules. First, make checks for Makefiles in the gl ue, src, and ui directories and uses

them, if they are present. You must prepend the PREFI X environment variable on the install

phase of the Makefile so that RPMs are properly generated.

In addition, the make r pmrule does not touch the sr ¢ directory, so you must create any
RPMs you want from separate specification files. t enpl at es/ packi ng_l i st. t npl should
be updated to reflect any of these RPMs without version numbers. You should create a file
with the same name as the RPM in the r pns directory to get the appropriate version included
in the packing list.

Finally, you might need to edit t enpl at es/ r pndef s. t npl to add additional build, install,
and file targets for any files that you have. The <begi n [$%4 VARI ABLE> sections in the
rprdef s. t npl file correspond to the same [VARI ABLE_SECTI ON] sections int enpl at es/
spec. t mpl . If you want to add something to spec. t npl that is not dependent upon a single
RPM, you can directly add it to spec. t npl .

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—7

NOTE: If you have a VENDORNAME specified, make searches first in { gl ue,
| ocal e, ui, src}/$(VENDORNAME) for files before searching in the gl ue,
| ocal e, ui, and src directories.

Introducing Slush Barn, a “Real-World” Application

Here is an example of how to create a new Qube 3 software architecture module. The goal of
this example is to manage a barn of animals using a UIFC-enabled front-end while updating
an XML file on the server. This example is included to help you better understand how the
pieces of the Qube 3 software architecture work together to form a simplified means of
creating Web-based server administration tools.

The files created in making this module are listed in below. Although many files are needed
for this module to work properly, each file is usually very short and serves its purpose. Details
on the syntax and contents of each file type are listed throughout this manual.

NOTE: These code modules are given the vendor-specific name sl ush so that
they are differentiated from the Qube 3 software architecture standard files. For
a list of standard files, see Appendix D, “Base Data Types”.

* slush-barn.mod/Makefile

* slush-barn.mod/glue/conf/barn.conf

* slush-barn.mod/glue/handlers/Animal.pl

* slush-barn.mod/glue/schemas/animal.schema
* slush-barn.mod/glue/handlers/Animal.pl

* slush-barn.mod/ui/menu/barn.xml

* slush-barn.mod/ui/web/animal.php

* slush-barn.mod/ui/web/animalHandler.php

* slush-barn.mod/ui/web/slaughter.php

* slush-barn.mod/locale/en/animal.po

Chapter 6: Making Qube 3 Software Architecture-Aware Applications

The data types are registered with CCE using a t ypedef and a class tag within the XML file
ani mal . schema. The t ypedef called ani mal Type defines a new type that might contain
only the strings Pi g, Cow, Hor se, and Chi cken. The class itself is called Bar nAni mal and
has two properties. The nane property refers to the given name of that particular barn animal,
and the t ype property is defined as being of type ani mal Type. Each time an addition is
made to our barn, a new instance of the class Bar nAni mal is created and its properties are
filled with the data entered by the user.

Event handlers are also registered with CCE. These event handlers are found within the

bar n. conf file. As defined, our handler (Ani nal . pl) is called upon any creation, change, or
destruction of a Bar nAni mal instance. The handler in turn uses the data entered to create and
update an XML file called / et c/ bar n. conf , but any types of service configuration can
occur here, as the handler is run as root if triggered by the admni n user.

The logic to the user interface is very simple. A listing of all the currently known animals is
listed in the bar n. php file using a Scr ol | Li st type. This type allows for multiple columns
of data along with formatting rules making for a clear and distinct separation between the
logic and presentation of the user interface. The Modi f yBut t on and the AddBut t on on this
page link to a page called ani mal . php, which is generic in that it allows for both the creation
and manipulation of animals within the barn. These actions are done in the page named

ani mal Handl er . php, which receives the POST of the ani mal . php page. To remove an
animal from the barn, the sl aught er . php page is called along with the O D of the object to
be deleted.

In order for our pages to be linked within our site, we need to create the XML tree node. This
file is called bar n. xm and contains information regarding that node. An ID is assigned to
every node of the tree as a reference point when creating parent-child relationships.

In this example, you can manipulate objects in a barn.

NOTE: No animals were harmed in the making of this application.

The new page is shown in Figure 6—1.

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—9

Figure 6-1 Manipulating Barn Objects

@00 O

How to Install your Package File on the Qube 3

There are two ways that packages can be installed on the Sun Cobalt Qube 3 server appliance:
* Manually

¢ Update server

Both these ways provide information about the package, that is, package meta-information,
before the user installs the package. This meta-information includes fields with the package
name, vendor, description, license, and whether package dependencies exist; these fields are
described in Table 6-3 on page 6—13. This information is needed to properly display in the
Sun Cobalt Qube 3 server appliance Ul details about the package before its installed. To
provide this information, this information is included in the package list and the package
information directories for each package.

6—10

Chapter 6: Making Qube 3 Software Architecture-Aware Applications

Update servers alert you if they have new software for your Sun Cobalt Qube 3 server
appliance. When the Sun Cobalt Qube 3 server appliance is alerted that there is a new version
of software, the update server and the Sun Cobalt Qube 3 server appliance have the following
dialog:

1. The Sun Cobalt Qube 3 server appliance queries the server for information about new
software. It provides details about the Sun Cobalt Qube 3 server appliance including
the packages installs, Sun Cobalt Qube 3 server appliance identification, and so forth.

2. The update server replies with list of available packages with associated information,
such as license and locale information. This informations corresponds to the
packi ng_| i st and the contents of the pkgi nf o directory.

3. Ifan | nf oURL field is specified, a popup window with the URL is displayed when you
go to the install detail page. If an | nf oURL field is not specified, a short description of
the package is displayed.

4. Installation can be selected.
The events around the manual installation are as follows:

1. The user on the Sun Cobalt Qube 3 server appliance enters the package location
through either browser upload, URL download, or putting the file in
/ honme/ packages.

2. The Sun Cobalt Qube 3 server appliance prepares the package for installation and
displays the installation page. This informations corresponds to the packi ng_l i st
and the contents of the pkgi nf o directory.

3. The contents of the installation page display a short description of the package that is
to be installed.

4. Installation can be selected.

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—11

Installation Process

The following stages occur in the installation process:

* If the package requires the server to reboot, the user is prompted to reboot the
machine.

* The install process looks first for a spl ash page. If the spl ash page specifies the
pre-installation option, it looks for ani ndex. cgi ori ndex. php page to call. It
passes in the following two variables: submi t URL and cancel URL.

NOTE: The spl ash page optionally specifies a pre-installation page, which
allows the developer to create a custom page for the package including license
information. This page must be a CGI or PHP page that accepts GET requests.

* Ifthe spl ash page does not exist and the license field does, BlueLinQ presents a
standard license page containing the value of the license field.

NOTE: The Sun Cobalt Qube 3 server appliance software notification
mechanism is called BlueLinQ.

* Once the user accepts the license (if there is a license), BlueLinQ checks package
dependencies, and halts if there is a dependency error. If not, BlueLinQ runs the pre-
installation scripts, install RPMS, and then runs the post-installation script. The scripts
are located in the scri pt s directory of the package.

NOTE: BlueLinQ installs an RPM only if it is newer than any existing RPMs
If there is an existing RPM on the server, BlueLinQ increments the reference
count each time you add a package with a RPM referenced in it. When you
uninstall a package, the reference count is reduced. If the reference count for a
package is less than one, BlueLinQ deletes the RPM.

6—12 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

Choices for the Installation Process
You can customize your installation. You can change the look and feel of install by opting to
include:
* AninfoURL field.
* A splash page.
* A generic license.

The spl ash page must be a CGI or PHP file. The update process calls this CGI with the
following URL variables set: submi t URL and cancel URL.

Package Structure

The package file formatis at ar. gz file. When you install a package file, BlueLinQ checks
for the following items:

* Whether the fileis at ar file or a compressed t ar file.
* Whether the file is signed.
In packages for earlier Sun Cobalt products, package files had the following elements:
* packing_list
* RPMs
* SRPMs

* install _me script

Packages for earlier Sun Cobalt products had scripts that performed all installation tasks.
Package dependency checking was done by the package itself. New packages have scripts that
run at specified times.The scripts deal with the following issues:

* Pre-installation
* Post-installation
* Pre-uninstallation

* Post-uninstallation

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—13

BlueLinQ runs these scripts as part of the installation. Package dependencies are based on
vendor name, version number, and package name. You can evaluate version numbers to
determine if they are equal, less than, or greater than the target version. The Qube 3 software
architecture currently checks a three-part field, for example, 1.0 or 1.1.2.

The new packing list format includes the following elements as shown in Table 6-3.

NOTE: All the information in the package list format is case-sensitive.

Table 6-3 Package List Format

Component

Description

[Package -- Version=1.0]

Vendor Vendor name can include alphabetical characters, numbers,
underscore (_), and the plus sign (+). Spaces and hyphens (-) are
not permitted.

Vendor Tag Internationalizable vendor string.

Nanme Package name can include alphabetical characters, numbers,
underscore (_), and the plus sign (+). Spaces and hyphens (-) are
not permitted.

NanmeTag: Internationalizable package name string.

Cat egory Category information can include alphabetical characters,
numbers, underscore (_), and the plus sign (+). Spaces and
hyphens (-) are not permitted.

Locati on URL that specifies the package download location.

I nf oURL Additional information URL. Optional. Use this if you want to

display a new site (as opposed to installing a package).

I nf oURL options

Options that should be sent to the URL, which can include serial
number, product identifier (product), and vendor name (name).

Ver si on

Version of the package.

Ver si on Tag

Internationalizable version number.

Si ze

Size in bytes (only used by the update server).

6—14 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

Table 6-3 Package List Format

Component

Description

Pr oduct :

NOTE: Use this field to specify as
many products as you are
including. Include one line for
each package. You can use a
regular expression to specify
products, for example:

Sun Cobalt product requirements: for example, 4100WG or
4nnnWG.

NOTE: 4000WG is the product number for the basic Sun Cobalt
Qube 3 server appliance.

4010WG is the product number for the Sun Cobalt Qube 3 server
appliance with caching.

4100WG is the product number for the Sun Cobalt Qube 3 server

(400014010}4100) WG. appliance with caching and mirroring.

PackageType Specify conpl et e or updat e.

Opti ons Possible values are uni nst al | abl e, r eboot ,refreshui,
refreshcce.

LongDesc Internationalizable long description.

Short Desc Internationalizable short description.

Copyri ght: Internationalizable copyright string.

Li cense Internationalizable license information. Optional.

Spl ash Pre-install, post-install, pre-uninstall, post-uninstall.

Depend Package dependencies. For example, vendor : package. The

NOTE: Each dependency must be
on its own line. See “Package
Dependency Model” on

page 6—17 for more information.

package does not show up in the new or update pages if these
dependencies are not met. Here’s what is expected:

vendor : package vendor-package must exist.
vendor : package ! vendor-package must not exist.

vendor : package <=> version vendor-package is less
than, equal to, or greater than the specified version number.

vendor : package ! = version vendor-package not
equal to version.

Vi si bl eDepend

NOTE: Each dependency must be
on its own line. See “Package
Dependency Model” on

page 6—17 for more information.

Just like Depend except that the package shows up in the new or
update lists even if dependencies are not met.

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—15

Table 6-3 Package List Format

Component Description

bsol et es Obsoletes vendor-packages.
NOTE: Each obsoletes mustbe on f or mat :

its own line. See “Package vendor : package

Dependency Model” on

. . : <=> i
page 6—17 for more information. vendor: package version

RPM Used only by the actual package.

SRPM Used only by the actual package.

NOTE: Internationalized strings are in the following format: [[vendor]] . If
you are specifying strings within the pkgi nf o locale directory, then do not
specify a domain. The Qube 3 software architecture specifies the domain for
you. The pkgi nf o locale strings cannot include locale tags within locale tags.
You can include locale tags that refer to other domains.

Package files have the following structures. Figure 6—2 shows the package file structure.

Figure 6-2 Package File Structure
—— packing_list

L pkginfo [3
s
SCHIpTS —pre-install :"-‘:i

—post-install ti
o
—pre-uninstall \:1
—post-uninstall h
——RPMS E«:L :

——SRPMS E:L

See “Module File Hierarchy” on page 623 for a more complete file hierarchy.

6—16 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

NOTE: The packi ng_| i st format for packages is very similar to the package
part of the package_| i st update server packing list. You can use them
interchangeably with the caveat that some fields are unused. For example, the
update server information uses the si ze field. The packing list uses RPM,
SRPM, and fi | eNane.

The following features are only used by software update notification mechanism (BlueLinQ):
* Size (inbytes)
* | nfoURL
* Location
* PackageType
The following fields are only used by actual package installation mechanism:

* RPM
* SRPM

* Options

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—17

Package Dependency Model

The dependency model allows you to restrict packages to particular Sun Cobalt products, for
example, the Sun Cobalt Qube 3 server appliance. You can also include dependencies on other
software packages. Finally, you can declare old packages obsolete.

The format for dependency requires that each dependency is on a separate line with a label
denoting the type of dependency. The Qube 3 software architecture offers three types of
dependency information:

®* Product: Sun Cobalt Product Dependency, such that the package installs if other
software products that are needed are not already installed. These are checked by
product ID, for example 4000WG. You can use a specific product, particular version, or
you can use a Perl regular expression here.

* Package dependencies:

* Depend: Normal package dependency based on the version number being less
than (<), equal to (=), or greater than (>) the version number specified.

® Visibl eDepend: Same as Depend but is only useful for the software update
mechanism. The packages that do not meet dependencies behave identically to the
Depend in all other manners to new or update packages despite the fact that the
package cannot be installed.

* (bsol etes: Obsoletes package’s name or name and optional version, less than (<),
equal to (=), or greater than (>) the version number specified, which removes
information about other packages of that name or version number specified.

Information for Installing Stand-Alone Packages

The following are used in the actual package installation process but not in update server-
supplied information. They are not used for the update server pkgi nf o.

* RPM
* SRPM

* Options (in a comma-separated list) include:

* reboot
* refreshui

* refreshcce

6—18 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

®* uninstallable

These fields are used to provide information and are included in the actual package, as well as
provided by the update servers:

* Package identification
* nane and nanet ag
* versionandversionTag
* vendor and vendor Tag
* Description
* shortDesc
* | ongDesc
* License information
* License
* Splash
* Category
These fields are found only in update server package:
* Size (in bytes)
* PackageType: conpl et e or updat e
* Location

* | nfoURL: A pop-up window appears when the user clicks the magnifying glass.

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—19

Figure 6-3 New Software Installed

- 4 % 2 = 6 <4 & O B

Back r Falnad Havwe Saarch MHelicaps i Frink Sscorily Shep Sinp

Lestion _.ﬁ.lﬂ‘;- F P11 ookl oo 448 Trae Fol g ? php freeber sel | fJ'ﬂll": Relaks
-.'5- ‘Weliorss i INTE 5‘- Bl i -j- P b -:;'-'-'ﬂh-r Fages .&- [srmrybeged -j- Gt ki -\.'ﬁ'- Wbl -.&- Gl M Mt ber -.'\5- [EE]

MW 5 albwii e

Updal ma
Instaled 5odbware
Seltlinga

Ires Gl

Mame 7 Wassion 7 anckr - ar i
L J : ; ; Ll iy Detak

2 GugeiTeadPhgd 1.0 Coakuslt Cubad Tant 4 q
imm 92 i i e g profechien by provd dineg aub st ed
s 4.z Kno SREE L i r B qll

If you click on the magnifying glass, you see the information shown in Figure 6—4, which
corresponds to the information in Table 6-3 on page 6—13.

Figure 64 New Software Installation Details
gl I -] T
MO T W O L}

Updiates

Mame

JubeITesiE kg
¥ ersien Lo

Seltimgs ¥ e Tkt
Cosghl == L
[iecrnphor Jubed Tast 4
Locshior hitp ¥acinan | cobell coméguie Resmple plo
Sz2e E] 0. FE3
Lragimkaied Ho
O ik iodried el Pk Coabah OF = &0

6—20 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

Software Update Server

NOTE: Ifthei nf oURL file exists, it displays a popup window and does not
install the actual package.

The BlueLinQ tab on the Sun Cobalt Qube 3 server appliance has an Updates menu. This
page lists available software with the following information.

* Update server-provided information (name, vendor, locale, description).

* Pop-up information. | nf oURL displays the URL to be passed the Sun Cobalt Qube 3
server appliance serial number.

* The package checks for an | nf oURL. If one exists, the page referenced by the
I nf oURL appears. If not, the package presents the license information, and installs
after the user accepts the license agreement.

When users click on Install Details, the Sun Cobalt Qube 3 server appliance:

* Displays the spl ash page if there is one or displays a license agreement in
standardized license format.

* Begins installation.

When the user begins installation, these events occur on the Sun Cobalt Qube 3 server
appliance:

* It checks for a signature and attempts to authenticate it, if one is present. If the
signature cannot be authenticated, a message is displayed letting the user know that the
signature check failed.

* It runs the preinstallation script.

* It installs the Redhat Package Modules (RPMs).

NOTE: Sun Cobalt uses Redhat Package Manager (RPM) files because
applications are easy to manage if they are installed using RPM utilities. For
details on creating *.rpm files (also known as “redhat package module” files),
see Maximum RPM, by Marc Ewing and Erik Troan. Maximum RPM is the
definitive technical reference for the RPM packaging system. It provides
information on RPM’s history, usage, and internals from both the user and
packager perspectives. See htt p: // www. r edhat . comi for the most up-to-date
information about RPM technology.

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—21

¢ It runs the postinstallation scripts.
* It reboots or refreshes, if those options are set.

Figure 6-5 shows the Update Server page.

Figure 6-5 Update Software Installed

Iriakalled Salbwers
Settings W_

w hame gy Vesonos venco Deadi pian Croteis
b CmibedTestPegs: 1.3 Cobak Cribed Tesl 3 ":L
O oS pdate T Cobsl Coball 05 Update Q
& O pelale i Gobal Codunll (15 L pedat e ﬁ,
0 e) pedai e I bl Thiy pscicags o uposl s For Cotel 05 Q

If you click on the magnifying glass, you see the information shown in Figure 66, shown in
Figure 64, which corresponds to the information in Table 63 on page 6—13.

Figure 6-6 Update Software Installation Details

i Crule 3 Tes g3
InsAaled 5ol ware Y esion 1=
Helbings ¢ A o Cholall
- pymghl copymght
Dy plian Crabe3 Tegt 3
Lecadiog I Vaddrian | eobalf comgube 3 saraple kg
iz pAH] 0. 163
rarcedels bl e Hn
e el Palon ey CoBall IS m & 1

6—22 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

Development Details

Modules expect the following auxiliary support from the Qube 3 software architecture
development tools:

* SAUSALI TQ devel / nodul e. nk for all the Makef i | e rules.
® SAUSALI TQ bi n/ mod_r pni ze for the RPM specification file generator.

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—23

Figure 6-7 Module File Hierarchy

I Makefile [«:3
Constructor
_l—serviceConstructor.pl

Destructor

|___serviceDestructor.pl

glue 7
am 3
service.conf

conf ‘:“1
service.conf

—|—_handlers :‘1

addservice.pl
delservice.pl
modservice.pl

schemas '},
sevice.schema

locale :‘1
|_en ;1‘
|— service.po

SI'C H:L

Makefile
ServiceHelper (7}
— Makefile
—— serviceHelper.c
— serviceHelper.h

—— serviceHelper.sh
v Continued on next page.

6—24 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

templates hj,

packing.list.tmpl
—— rpmdefs.tmpl
spec.tmpl

ui »:.1)
|__menu L}
serviceRoot.xml
serviceAdmin.xml
serviceUser.xml

web L,

serviceSettings.php
serviceSettingsHandlers.php

Appendix A

User Interface Foundation Classes

This appendix is a complete reference for all User Interface Foundation Classes (UIFC). The
UIFC is a comprehensive set of class libraries for Sun Cobalt’s user interface components.
Their functions include generation of HTML code for rendering and JavaScript code for error
checking. “Utility Classes” on page B—1 describes classes that work in conjunction with the
UIFC classes.

To use UIFC, you should have some basic knowledge about object-oriented design and
programming as well as PHP, because UIFC is object-oriented and implemented in PHP.

The UIFC were designed to provide both user interface consistency and flexibility.

Ht M Conponent Fact ory is the first class you should look at. It is a factory class that
constructs UIFC classes in the most commonly used way. See “HTMLComponent” on
page A-27.

Each UIFC class is listed in this appendix in alphabetical order.

HTML Generation

UIFC contains classes of visual components. The classes have methods to generate the look
and feel in HTML. For example, the | pAddr ess class generates HTML code that represents
an [P address data type. In this way, a change in look and feel of a visual component within
the whole user interface can be accomplished by modifying just one class.

Error Checking

Form fields in UIFC support the plug-in of JavaScript error checking code. This feature is
useful for checking and reporting errors interactively. Not all form fields require error
checking because their input might be limited to valid data. For more information of error
handling, see “Error” on page B-3.

A—2 Appendix A: User Interface Foundation Classes

Reusable Code

The class hierarchy of UIFC is designed to be reusable. It is easy to subclass a UIFC class and
make a more specific visual component. For example, a class B IP address can be made by
subclassing the | pAddr ess class. For nfi el dBui | der also generates HTML code.

Common Pitfalls

There are several things to avoid when using UIFC:

The UIFC encompass many functions. You must pay special attention in extending
UIFC classes to add new functionality. New functionality can introduce
inconsistencies if the functionality does not occur in the existing user interface.

* Because UIFC is written in PHP and PHP does not have good support for object-
oriented programing, UIFC users can directly refer to private variables and methods of
UIFC classes. For good programming practice, do not do this because these functions
could change in the future.

* Do not use UIFC to format free-flow text paragraphs. Pure HTML provides more
formatting capabilities than UIFC. You can put HTML inside UIFC pages.

* Thet oHeader Ht m () method of the Page object outputs HTTP headers. Do not print
anything before this method. As a common PHP catch, blank lines are printed. The
following code provides a warning because there is a blank line above the method:

<?php
?>

<?php
print ($page- >t oHeaderH m ());
?>
* Because PHP is interpreted and is basically typeless, it is very easy to pass in

parameters of wrong types to functions or methods. This can generate runtime errors
from UIFC classes that your code does not use directly.

Appendix A: User Interface Foundation Classes A—3

AddButton

This class creates an Add But t on. The application causes an Add But t on action when the
button is clicked.

Extends: The class AddBut t on extends But t on.

Implements: The class AddBut t on implements HTMLConponent , Styl i sh, and
Col | at abl e.

See Also: BackBut t on, Cancel But on, Det ai | But t on, | mageBut t on, Modi f yBut t on,
Mul ti But t on, RenbveBut t on, SaveBut t on, Uni nstal | Button.

Public Methods

functi on AddButton($page, $action)

BackButton

Description: Constructor.
Parameters:
$page: The Page object in which this object resides.

$act i on: The string used within HREF attribute of the A tag.

This class creates a Back But t on. The application causes a Back Butt on action when the
button is clicked.

Extends: The class BackBut t on extends But t on.

Implements: The class BackBut t on implements HTM.Conponent , St yl i sh, and
Col | at abl e.

See Also: AddBut t on, Cancel But on, Det ai | Butt on, | mageButt on, Modi f yButt on,
Mul ti Butt on, RenbveButt on, SaveButt on, Uninstall Button.

A—4 Appendix A: User Interface Foundation Classes

Public Methods

functi on BackButton($page, $action)
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.

$act i on: The string used within HREF attribute of the A tag.

Bar

This class creates a vertical bar on the page.
Extends: The class Bar extends For nFi el d.
Implements: The class Bar implements HTM_Conponent, Styl i sh, and Col | at abl e.

See Also: For nFi el d.

Public Methods

function getLabel ()
Description: Gets the label.
Parameters:None.
Returns: A label in string.

See Also: set Label ().

Appendix A: User Interface Foundation Classes A—5

function setLabel ($l abel)
Description: Sets the label to replace the percentage shown by default.
Parameters:
$| abel : A label in string.
Returns: Nothing

See Also: get Label ().

function setVertical ()
Description: Sets bar to type vertical.
Parameters:None.

Returns: Nothing

Button

This class creates a labeled But t on. The application causes a specified action when the button
is clicked.

Extends: Ht ml Conponent .
Implements: The class But t on implements HTM.Conponent , St yl i sh, and Col | at abl e.

See Also: AddBut t on, BackBut t on, Cancel But on, Det ai | But t on, | mageBut t on,
Modi f yButt on, Mul ti Button, RenoveButton, SaveButton, Uninstall Button.

Appendix A: User Interface Foundation Classes

Public Methods

function Button($page, $action, $label, $labelDisabled = "")
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.
$act i on: The string used within HREF attribute of the A tag.
$| abel : A Label object for the normal state.

$| abel Di sabl ed: A Label object for the disabled state. Optional. If not supplied, it is
the same as $I abel .

function getAction()
Description: Gets the action to perform when the button is pressed.
Parameters:None.
Returns: An action.

See Also: set Acti on().

function setAction($action)
Description: Sets the action to perform when the button is pressed.
Parameters:
$act i on: The action to perform.
Returns: Nothing

See Also: get Acti on().

Appendix A: User Interface Foundation Classes

function isDisabl ed()
Description: Gets the state of the button.
Parameters:None.
Returns: True if the button is disabled; false otherwise.

See Also: set Di sabl ed() .

function setDi sabl ed($i sDi sabl ed)
Description: Sets the state of the button.
Parameters:
$i sDi sabl ed: True if the button is disabled; false otherwise.
Returns: Nothing

See Also: i sDi sabl ed().

function getLabel ()
Description: Gets the label for the button.
Parameters:None.
Returns: A label in string.

See Also: set Label ().

function get Label Di sabl ed()
Description: Gets the disabled label for the button.
Parameters:None.

Returns: A label in string.

A—S8 Appendix A: User Interface Foundation Classes

function setlLabel ($l abel, $l abel Di sabled = "")
Description: Sets the label for the button.
Parameters:
$| abel : A Label object for the normal state.

$l abel Di sabl ed: A Label object for the disabled state. Optional. If not supplied, it is
the same as $| abel .

Returns: Nothing

See Also: get Label ().

function toHtmd ($style = "")
Description: Gets an HTML representation of the button to present.
Parameters:

$styl e: The style of the representation in a Style object. Optional. If not supplied,
default style is used.

Returns: The HTML that represents the button.

CancelButton

This class creates a Cancel Butt on. The application causes a Cancel But t on action when
the button is clicked.

Extends: The class Cancel But t on extends But t on.

Implements: The class Cancel But t on implements HTM_Conponent , Styl i sh, and
Col | at abl e.

See Also: AddBut t on, BackBut t on, Det ai | But t on, | mageBut t on, Modi f yButton,
Mul ti Button, RenmoveButt on, SaveButton, Uninstall Button.

Appendix A: User Interface Foundation Classes A—9

Public Methods

function Cancel Button($page, $action)
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.

$act i on: The string used within HREF attribute of the A tag.

CompositeFormField

This class creates a Conposi t eFor nFi el d.

Extends: The class Conposi t eFor nfFi el d extends For nFi el d.

Public Methods

functi on ConpositeForntield()
Description: Constructor.

Parameters:None.

function getDelimter()
Description: Gets the delimiter to separate form fields.
Parameters:None.
Returns: A delimiter in string.

See Also: setDelimter().

A—10 Appendix A: User Interface Foundation Classes

function setDelimiter($delinter)
Description: Sets the delimiter to separate form fields.
Parameters:
$del i mi ter: A delimiter in string.
Returns: Nothing

See Also: getDel imter().

function get FornFi el ds()
Description: Gets form fields added to this object.
Parameters:None.

Returns: An array of FormField objects.

function addFor nFi el d($f or nFi el d)
Description: Adds a form field to this object.
Parameters:

$f or nFi el d: A FormField object.

Returns: Nothing

Appendix A: User Interface Foundation Classes A—11

CountryName

This class creates a Count r yNane.

Extends: The class Count r yNane extends For nFi el d.

Public Methods

function CountryName($page, $id, $val ue)
Description: Constructor.
Parameters:
$page: The Page object this form field resides in.
$i d: The identifier of this object.

$val ue: The group of country names defined in ISO 3166.

DetailButton

This class creates a Det ai | But t on. The application causes a Det ai | But t on action when
the button is clicked.

Extends: The class Det ai | But t on extends But t on.

Implements: The class Det ai | But t on implements HTM_LConponent , St yl i sh, and
Col | at abl e.

See Also: AddBut t on, BackBut t on, Cancel But on, | mageBut t on, Modi f yButt on,
Mul ti Button, RenmoveButt on, SaveButton, Uninstall Button.

A—12 Appendix A: User Interface Foundation Classes

Public Methods

function Detail Button($page, $action)
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.

$act i on: The string used within HREF attribute of the A tag.

DomainName

This class creates a Domai nName.

Extends: The class Domai nNane extends For nFi el d.

DomainNamelList

This class creates a Donmai nNaneLi st .

Extends: The class Domai nNanmeLi st extends For nFi el d.

EmailAddress

This class creates an Emai | Addr ess.

Extends: The class Emai | Addr ess extends For nFi el d.

Appendix A: User Interface Foundation Classes A—13

EmailAddressList

This class creates an Enai | Addr essLi st .

Extends: The class Emai | Addr essLi st extends For nFi el d.

Public Methods

function Enail AddressLi st ($page, $id, $val ue, $invalidMessage, $enptyMessage)
Description: Superclass constructor.
Parameters:
$page: The Page object this form field resides in.
$i d: The identifier of this object.
$val ue: The path.
$i nval i dMessage: The message to be shown upon invalid input. Optional.

$enpt yMessage: The message to be shown upon empty input if the field is not optional.
Optional.

function setlnport($on, $javascriptFunction ="")

Description: Sets the import feature of the list so that email addresses can be imported from
the address book.

Parameters:
$on: True to enable import; false to disable.
$j avascri pt Functi on: JavaScript code that is being run during import.

Returns: Nothing

A—14 Appendix A: User Interface Foundation Classes

function setFormat($format = "BLOCK")
Description: Sets the format of the list.
Parameters:

$f or mat : Format to have the Enai | Addr essLi st show up in either BLOCK mode in
which email addresses are one per line using a Text Bl ock field or in a SI NGLELI NE
mode where multiple email addresses can be entered comma-separated in a Fi r st

Last nane <abc@bc. net > format. Using SI NGLEL| NE returns the email addresses
only in the $i d variable as done in the BLOCK mode, but also returns the unformatted data
in the $i d_f ul | variable.

Returns: Nothing

FileUpLoad

This class creates a Fi | eUpl oad.

Extends: The class Fi | eUpl oad extends For nFi el d.

Public Methods

function Fil eUpl oad($page, $id, $value, $maxFileSize = "", $invalidMessage,
$enpt yMessage = "")

Description: Constructor.
Parameters:
$page: The Page object this form field resides in.
$i d: The identifier of this object.
$val ue: The path.
$maxFi | eSi ze: The maximum file size allowed to upload in bytes. Optional.

$i nval i dMessage: The message to be shown upon invalid input. Optional.

Appendix A: User Interface Foundation Classes A—15

Form

$enpt yMessage: The message to be shown upon empty input if the field is not optional.
Optional.

function set MaxFil eSi ze($naxFi |l eSi ze)

Description: Sets the maximum file size allowed to upload.
Parameters:
$maxFi | eSi ze: Bytes in integer.

Returns: Nothing

This class represents an HTML form.

Applicability

This class is used where an HTML form is needed.

Usage

Each Page contains a For mobject that is accessible by the get For n() method of the Page
object. Form objects have get | d() methods to get its ID, which is used as the nane attribute
of the HTML f or mtag. Each form has a JavaScript onsubni t () handler associated with it.
Because JavaScript function f or m submi t () does not call the onsubni t () handler; you
must explicitly call onsubmi t () if you submit the form through JavaScript. If no action is
supplied, environment variable REQUEST_URI is used as action. Otherwise, JavaScript
variable i sActi onAvai | abl e for the form object is set to true.

A—16 Appendix A: User Interface Foundation Classes

Public Methods

functi on Form($page, $action = "")
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.

$action: The act i on attribute of the f or mtag. Optional. If not supplied, it is set to
environment variable REQUEST_URI.

function getAction()
Description: Gets the act i on attribute.
Parameters:None.
Returns: The act i on attribute of the f or mtag.

See Also: set Action().

function setAction($action)
Description: Sets the act i on attribute.
Parameters:
$action: The acti on attribute of the f or mtag.
Returns: Nothing

See Also: get Acti on().

function getTarget()
Description: Gets the target.
Parameters: None.

Returns: The t ar get attribute of the f or mtag.

Appendix A: User Interface Foundation Classes A—17

See Also: set Target ().

function set Target ($target)
Description: Sets the target.
Parameters:
$target: Thetarget attribute of the f or mtag.
Returns: Nothing

See Also: get Target ().

function getld()
Description: Gets the ID of the form. It is also the nane attribute.
Parameters:None.
Returns: An identifier in string.

See Also: set 1 d().

function setld($id)
Description: Sets the ID of the form. It is also the nane attribute.
Parameters:
$i d: An identifier in string.
Returns: Nothing
See Also: get 1 d() .

function get Subm t Action()
Description: Gets the form action that is used to submit the form.
Parameters: None.

Returns: A string.

A—18 Appendix A: User Interface Foundation Classes

function toFooterH m ($style = "")
Description: Translates the footer of the form into an HTML representation.
Parameters:

$styl e: The style of the representation in a Style object. Optional. If not supplied,
default style is used.

Returns: The HTML that represents the field.

FormField

This class represents an HTML form field.

Extends: The class For nFi el d extends Ht nl Conponent .

NOTE: You can not put HTML into FormField values.

Public Methods

function FornFi el d($page, $id, $value = "", $invali dMessage ="", $enptyMessage
=)

Description: Constructor.
Parameters:
$page: The Page object this form field resides in.
$i d: The identifier of this form field. Used in the narne attribute of input fields.

$val ue: The default value of this form field. Depending on what this form field is, the
value can be different.

$i nval i dMessage: The message to be shown upon invalid input. Optional.

$enpt yMessage: The message to be shown upon empty input if the field is not optional.
Optional.

Appendix A: User Interface Foundation Classes A—19

function get Access()
Description: Gets the access property.
Parameters:None.
Returns: A string.

See Also: set Access() .

function set Access($access)
Description: Sets the access property.
Parameters:
$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.
Returns: True on success; false otherwise.

See Also: get Access().

function get Enpt yMessage()
Description: Sets the message to display when the form field is empty.
Parameters:None.
Returns: A string.

See Also: set Enpt yMessage() .

function set Enpt yMessage($enpt yMessage)
Description: Sets the message to display when the form field is empty.
Parameters:
$enpt yMessage: A string.
Returns: Nothing

See Also: get Enpt yMessage() .

A—20

Appendix A: User Interface Foundation Classes

function getld()

Description: Gets the unique ID of the form field.
Parameters:None.
Returns: An identifier in string.

See Also: set 1d() .

function set!d($id)

Description: Sets the unique ID of the form field. It is used to identify the form field when the
form containing the field is submitted. This ID is a variable name; only alphanumeric
characters and underscores are supported.

Parameters:
$i d: An identifier in string.
Returns: Nothing

See Also: get 1 d() .

function getlnvalidMessage()

Description: Gets the message to display when the form field is invalid.
Parameters:None.
Returns: A string.

See Also: set | nval i dMessage() .

function setlnvali dMessage($i nval i dMessage)

Description: Sets the message to display when the form field is invalid.
Parameters:

$i nval i dMessage: The message to be shown upon invalid input. Optional.
Returns: Nothing

See Also: get | nval i dMessage() .

Appendix A: User Interface Foundation Classes A—21

function isOptional ()
Description: Gets the optional flag.
Parameters:None.
Returns: True if this form field is optional; false otherwise.

See Also: set Opti onal ().

function set Qptional ($optional)
Description: Sets the optional flag; it indicates if the form field can be empty.
Parameters:
$opt i onal : True if the field is optional; false otherwise.
Returns: Nothing

See Also: i sOptional ().

function getVal ue()

Description: Gets the value of different types depending on which concrete subclass of form
field this is.

Parameters:None.
Returns: The value.

See Also: set Val ue() .

function setVal ue($val ue)

Description: Sets the value; depending on the concrete type of the form field (for example,
| pAddr ess); this value can be of different type.

Parameters:
$val ue: Any variable.
Returns: Nothing

See Also: get Val ue() .

A—22 Appendix A: User Interface Foundation Classes

FormFieldBuilder

This class helps to build form field components.

Applicability

Any form field can use this class to build components.

Public Methods

function makeCheckboxFi el d($id, $val ue, $access, S$checked, $onClick = "")
Description: Makes a checkbox field.
Parameters:
$i d: The identifier of the field.
$val ue: The value of the HTML input field.
$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.
$checked: True if it is checked; false otherwise.
$ond i ck: The onC i ck attribute of the field.

Returns: The HTML that represents the field.

Appendix A: User Interface Foundation Classes A—23

function makeFil eUpl oadFi el d($i d, $access, $size, $nmaxLength, $onChange)

Description: Makes a file upload field.

Parameters:
$i d: The identifier of the field.
$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.
$si ze: The length of the field.
$maxLengt h: The maximum number of characters that can be entered into the field.
$onChange: The onChange attribute of the field.

Returns: The HTML that represents the field.

functi on makeH ddenFi el d($id, $value = "")
Description: Makes a hidden field.
Parameters:
$i d: The identifier of the field.
$val ue: The value of the HTML input field.

Returns: The HTML that represents the field.

functi on nakeJavaScri pt ($f ornFi el d, $changeHandl er, $submi t Handl er)
Description: Makes JavaScript for form fields.
Parameters:
$f or nFi el d: The FormField object to generate JavaScript for.
$changeHand!| er: The JavaScript function that is called when the form field change.
$submi t Handl er: The JavaScript function that is called when the form field submits.

Returns: The HTML that represents the field.

A—24

Appendix A: User Interface Foundation Classes

functi on nmakePasswor dFi el d($i d, $val ue, $access, $size, $onChange)

Description: Makes a password field.
Parameters:
$i d: The identifier of the field.
$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.
$si ze: The length of the field.
$onChange: The onChange attribute of the field.
Returns: The HTML that represents the field.

functi on nakeRadi oFi el d($i d, $val ue, $access, $checked)

Description: Makes a radio field.
Parameters:
$i d: The identifier of the field.
$val ue: The value of the HTML input field.
$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.
$checked: True if it is checked; false otherwise.

Returns: The HTML that represents the field.

Appendix A: User Interface Foundation Classes A—25

function makeSel ect Fi el d($i d, $access, $size, $width, $isMiltiple, $formd,
$onChange = "", $labels = array(), $values = array(), $sel ectedl ndexes =

array())

Description: Makes a select field.

Parameters:
$i d: The identifier of the field.
$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.
$si ze: The si ze attribute of the HTML SELECT tag.
$wi dt h: The minimum width. Select field width is static in Netscape and dynamic in IE.
$i sMul ti pl e: True if multiple items can be selected; false otherwise.
$f or ml d: The ID of the form this field resides in.
$onChange: The onChange attribute of the field. Optional.
$l abel s: An array of labels in string. Optional. Must have same length with $val ues.
$val ues: An array of values in string. Optional. Must have same length with $| abel s.
$sel ect edl ndexes: An array of indexes of labels for the selected field.

Returns: The HTML that represents the field.

function makeText Fiel d($id, $val ue, $access, $size, $maxLength, $onChange)
Description: Makes a text area field.
Parameters:
$i d: The identifier of the field.
$val ue: The value of the HTML input field.
$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.
$si ze: The length of the field.
$maxLengt h: The maximum number of characters that can be entered into the field.

$onChange: The onChange attribute of the field.

A—26 Appendix A: User Interface Foundation Classes

Returns: The HTML that represents the field.

function nakeText AreaFi el d($i d, $val ue, $access, $rows, $col ums, $onChange,
$W ap = " II)

Description: Makes a text area field.
Parameters:
$i d: The identifier of the field.
$val ue: The value of the HTML input field.
$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.
$rows: The number of rows.
$col ums: The number of columns.
$onChange: The onChange attribute of the field.
Returns: The HTML that represents the field.

function nakeText Li stFiel d($id, $val ues, $access, $form d, $rows, $col umms)
Description: Makes a text list field.
Parameters:
$i d: The identifier of the field.
$val ues: An array of values in string.
$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.
$f or m d: The ID of the form this field resides in.
$rows: The number of rows.
$col umms: The number of columns.

Returns: The HTML that represents the field.

Appendix A: User Interface Foundation Classes A—27

FullName

The class Ful | Nanme extends For nfFi el d.

GroupName

The class Gr oupNane extends For nFi el d.

HTMLComponent

This class creates an Ht M Conponent .
Extends: The class Ht i Conponent extends St yl i sh.

Implements: The class Ht Ml Conponent Col | at abl e.

function H n Conponent ($page)
Description: Constructor.
Parameters:

$page: The Page object in which this object resides.

function set Page($page)
Description: Sets the Page object in which this HTM_Conponent resides.
Parameters:
$page: The Page object in which this object resides.

Returns: Nothing

A—28 Appendix A: User Interface Foundation Classes

function toH nl ($style = "")
Description: Translates into an HTML representation.
Parameters:

$styl e: The style of the representation in a Style object. Optional. If not supplied,
default style is used.

Returns: The HTML that represents the field.

ImageButton

This class creates an | mage But t on. The application causes an | mage But t on action when
the button is clicked.

Extends: The class | nrageBut t on extends But t on.

Implements: The class | mageBut t on implements HTM_Conponent , Styl i sh, and
Col | at abl e.

See Also: AddBut t on, BackBut t on, Cancel But on, Det ai | But t on, Modi f yBut t on,
Mul ti Butt on, RenoveButt on, SaveButton, Uninstall Button.

Public Methods

function I mageButton($page, $action, $image, $lbl, $desc)
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.
$act i on: The string used within HREF attribute of the A tag.
$i mage: An URL of an image.
$I bl : A label in string.

$desc: A description string.

Appendix A: User Interface Foundation Classes A—29

ImageLabel

This class creates an | mageLabel .

Extends: The class | rageLabel extends Label .

Public Methods

function I mageLabel ($page, $image, $l abel, $description ="")
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.
$i mage: An URL of an image.
$| abel : A label in string.

$descri ption: A description string.

function getlmage()
Description: Gets the image used as the label.
Parameters:None.
Returns: An URL of an image.

See Also: set | mage() .

function set!| mage($i mage)
Description: Sets the image used as the label.
Parameters:
$i mage: An URL of an image.

Returns: Nothing

A—30 Appendix A: User Interface Foundation Classes

See Also: get | mage() .

Integer

The class | nt eger extends For nFi el d.

Public Methods

function I nteger($page, $stylist, $id, $value, $invalidMessage, $enptyMessage
= " II)

Description: Constructor.
Parameters:
$page: The Page object this form field resides in.
$stylist: A stylist object that defines the style.
$i d: The identifier of this object.
$val ue: The default value.
$i nval i dMessage: The message to be shown upon invalid input. Optional.

$enpt yMessage: The message to be shown upon empty input, if the field is not optional.
Optional.

function get Max()
Description: Gets the maximum valid value.
Parameters:None.
Returns: An integer.

See Also: set Max() .

Appendix A: User Interface Foundation Classes A—31

function set Max($nmax)
Description: Sets the maximum valid value.
Parameters:
$max: The maximum valid value.
Returns: Nothing

See Also: get Max() .

function getM n()
Description: Gets the minimum valid value.
Parameters:None.
Returns: An integer.

See Also: set M n() .

function setM n($mn)
Description: Sets the minimum valid value.
Parameters:
$mi n: The minimum valid value.
Returns: Nothing

See Also: get M n() .

function toHtmd ($style = "")
Description: Translates into an HTML representation.
Parameters:

$styl e: The style of the representation in a Style object. Optional. If not supplied,
default style is used.

Returns: The HTML that represents the field.

A—32 Appendix A: User Interface Foundation Classes

IntRange

The class | nt Range extends For nFi el d.

Public Methods

function | nt Range($page, $stylist, $id, $val ue, $invalidMessage, $enptyMessage
= " II)

Description: Constructor.
Parameters:
$page: The Page object this form field resides in.
$stylist: A stylist object that defines the style.
$i d: The identifier of this object.
$val ue: The default value.
$i nval i dMessage: The message to be shown upon invalid input. Optional.

$enpt yMessage: The message to be shown upon empty input if the field is not optional.
Optional.

function isConfirm)
Description: Superclass constructor.
Parameters:None.

See Also: set Confirn().

Appendix A: User Interface Foundation Classes A—33

function setConfirn($isConfirm
Description: Sets the configuration flag.
Parameters:
$i sConfirm True if a confirm field is shown; false otherwise.
Returns: Nothing
See Also: i sConfirm().

I[pAddressList

This class creates an | pAddr essLi st .

Extends: The class | pAddr essLi st extends For nFi el d.

Label

This class creates a Label .
Extends: The class Label extends Ht ml Conponent .

Implements: The class Label implements Col | at abl e.

Public Methods

function Label ($page, $l abel, $description ="")
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.

$l abel : A label in string.

A—34 Appendix A: User Interface Foundation Classes

$descri ption: A description string.

function getDescription()
Description: Gets the description of the label.
Parameters:None.
Returns: A description string.

See Also: set Descri ption().

function setDescription($description)
Description: Sets the description of the label.
Parameters:
$descri ption: A description string.
Returns: Nothing

See Also: get Descri ption().

function getLabel ()
Description: Gets the label.
Parameters:None.
Returns: A label in string.

See Also: set Label ().

function set Label ($l abel)
Description: Sets the label.
Parameters:
$| abel : A label in string.

Returns: Nothing

Appendix A: User Interface Foundation Classes A—35

See Also: get Label ().

Locale

The class Local e extends For nFi el d.

Public Methods

functi on get Possi bl eLocal es()
Description: Gets the list of possible locales.
Parameters:None.
Returns: An array of locale strings.

See Also: set Possi bl eLocal es().

function setPossi bl eLocal es($possi bl eLocal es)
Description: Sets the list of possible locales.
Parameters:

$possi bl eLocal es: An array of locale strings; br owser is also a possible special
locale string case.

Returns: Nothing

See Also: get Possi bl eLocal es().

MacAddress

The class MacAddr ess extends For nFi el d.

A—36 Appendix A: User Interface Foundation Classes

MailListName

The class Mai | Li st Nanme extends For nFi el d.

ModifyButton

This class creates a Modi fy But t on. The application causes a Modi fy But t on action when
the button is clicked.

Extends: The class Modi f yBut t on extends But t on.

Implements: The class Mbdi f yBut t on implements HTM_.Conponent , St yl i sh, and
Col | at abl e.

See Also: AddBut t on, BackBut t on, Cancel But on, Det ai | But t on, | mageBut t on,
Mul ti But t on, RenbveBut t on, SaveBut t on, Uni nstal |l Button.

Public Methods

function MdifyButton($page, $action)
Description: Constructor.
Parameters:None.
Parameters:
$page: The Page object in which this object resides.

$act i on: The string used within HREF attribute of the A tag.

MultiButton

This class represents a button with multiple actions. Users can perform one of those actions by
selecting it.

Appendix A: User Interface Foundation Classes A—37

Applicability

Anywhere a related set of actions are provided for the users to select and the selected one is
being performed.

Usage
Instantiate a Mul t i But t on by specifying a text. This text is like the label of the button.

Extends: The class Mul ti But t on extends For nFi el d.

Implements: The class Mul ti Butt on implements HTM_Conponent , Styl i sh, and
Col | at abl e. It also implements acti on[], actionText[], andtext.

See Also: AddBut t on, BackBut t on, Cancel But on, Det ai | But t on, | mageBut t on,
Modi f yBut t on, RenpoveBut t on, SaveBut t on, Uni nstal | Button.

Public Methods

function MiultiButton($page, $text ="", $id ="")
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.
$t ext : A label text in string. Optional.

$i d: The identifier of this object.

function get ActionText ($acti on)
Description: Superclass constructor.
Parameters:

$acti on: The string used within HREF attribute of the A tag.

A—38 Appendix A: User Interface Foundation Classes

function getActions()
Description: Gets all the text of the button.
Parameters:None.
Returns: An array of text strings.

See Also: addActi on(), getActions().

functi on addAction($action, $text)
Description: Adds an action to the button.
Parameters:
$act i on: The string used within HREF attribute of the A tag.
$t ext : A label text in string.

Returns: Nothing

function get Sel ect edl ndex()
Description: Gets the index of the selected action.
Parameters:None.
Returns: An array of indexes of labels for the selected action.

See Also: set Sel ect edl ndex() .

function set Sel ect edl ndex($sel ect edl ndex)
Description: Sets the index of the selected action.
Parameters:
$sel ect edl ndex: An array of indexes of labels for the selected action.
Returns: Nothing

See Also: get Sel ect edl ndex() .

Appendix A: User Interface Foundation Classes A—39

function get Text ()
Description: Gets the default text of the button.
Parameters:None.
Returns: A label text in string.

See Also: set Text ().

function set Text ($t ext)
Description: Sets the default text of the button.
Parameters:
$t ext : A label text in string.
Returns: Nothing

See Also: get Text ().

MultiChoice

This class represents a widget that allows users to choose one or more options. It can render
itself as different forms such as pull-down menus or checkboxes for different option types,
which can be a single option or many options.

Applicability

Use Mul ti choi ce where options need to be selected.

Usage

This class is used to instantiate an object and add options, for example, the Opt i on class, to it.
Each option can contain form field objects. For example, a multiple choice for payment
method can have cash and credit card options; the credit card option can have a credit card
number field associated with it. Although this class selects the best form to render

A—40 Appendix A: User Interface Foundation Classes

automatically, users can use the set Ful | Si ze() to force this class to use a more readable
but consume more space form. The set Mul ti pl e() methods can be used to make multiple
options selectable at once. When mul t i pl e is set, this submitted value of this form field is an
array encoded in a string by array packer.

Extends: The class Mul ti Choi ce extends For nFi el d.

Public Methods

function Milti Choi ce($page, $id)
Description: Constructor.
Parameters:
$page: The Page object this form field resides in.
$i d: The identifier of this object.

function get Options()
Description: Gets all options added.
Parameters:None.
Returns: An array of Option objects.

See Also: addOpt i on() .

function addOpti on($option, $sel ected)
Description: Adds an option; options are not selected by default when they are added.
Parameters:
$opt i on: An Option object.
$sel ect ed: True if selected; false otherwise.

Returns: Nothing

Appendix A: User Interface Foundation Classes A—41

function setFull Size($fullSize)
Description: Sets the full size mode.
Parameters:

$f ul | Si ze: True to make the object rendered as more readable, but less compact; false
otherwise.

Returns: Nothing

function setMultiple($multiple)
Description: Sets the multiple mode.
Parameters:
$nul ti pl e: True if multiple choices can be selected at the same time; false otherwise.

Returns: Nothing

function setSel ect ed($i ndex, $isSelected = true)
Description: Selects an option.
Parameters:
$i ndex: An integer index of the option.
$i sSel ect ed: True if selected; false otherwise. The default is optional and true.

Returns: Nothing

function setVal ue($val ue)
Description: Sets the value.
Parameters:
$val ue: A text string.

Returns: Nothing

A—42 Appendix A: User Interface Foundation Classes

MultiFileUpload

The class Mul ti Fi | eUpl oad extends For nFi el d.

Public Methods

function MiltiFileUpl oad($page, $id, $value, $maxFileSize = fal se,
$i nval i dMessage = "", $enptyMessage = "")

Description: Constructor.

Parameters:
$page: The Page object this form field resides in.
$i d: The identifier of this object.
$val ue: The path.
$maxFi | eSi ze: The maximum file size allowed to upload in bytes. Optional.
$i nval i dMessage: The message to be shown upon invalid input. Optional.
$enpt yMessage: The message to be shown upon empty input if the field is not optional.
Optional.

function get MaxFil eSi ze()

Description: Gets the maximum file size allowed to upload.

Parameters:None.

Returns: Bytes in integer.

See Also: set MaxFi | eSi ze() .

Appendix A: User Interface Foundation Classes

A—43

function set MaxFil eSi ze($maxFi | eSi ze)

Description: Sets the maximum file size allowed to upload.

Parameters:
$nmaxFi | eSi ze: Bytes in integer.
Returns: Nothing

See Also: get MaxFi | eSi ze() .

NetAddress

The class Net Addr ess extends For nFi el d.

NetAddressList

The class Net Addr essLi st extends For nFi el d.

Option

This class represents an option for the Mul ti Choi ce class.

Applicability

Use Opt i on where Mul ti Choi ce is used.

A—44 Appendix A: User Interface Foundation Classes

Public Methods

function Option($l abel, $value, $isSelected = fal se)
Description: Constructor.
Parameters:
$l abel : A Label object.
$val ue: The value of this option.
$i sSel ect ed: True if selected; false otherwise. The default is optional and false.

Returns: Nothing

function getLabel ()
Description: Gets the label.
Parameters:None.
Returns: A label in string.

See Also: set Label ().

function set Label ($l abel)
Description: Sets the label.
Parameters:
$| abel : A label in string.
Returns: Nothing

See Also: get Label ().

Appendix A: User Interface Foundation Classes

A—45

function isSel ected()
Description: Checks if the option is selected.
Parameters:None.
Returns: True if selected; false otherwise

See Also: set Sel ect ed() .

function set Sel ect ed($i sSel ect ed)
Description: Selects or unselects the option.
Parameters:
$i sSel ect ed: True if selected; false otherwise.
Returns: Nothing

See Also: i sSel ected().

function getVal ue()
Description: Gets the value.
Parameters:None.
Returns: A text string.

See Also: set Val ue() .

function setVal ue($val ue)
Description: Sets the value.
Parameters:
$val ue: A text string.
Returns: Nothing

See Also: get Val ue() .

A—46 Appendix A: User Interface Foundation Classes

function get FornFi el ds()
Description: Gets all the form fields of the block.
Parameters:None.

Returns: An array of FormField objects.

function get FornFi el dLabel ($f or nFi el d)
Description: Gets the label for a form field.
Parameters:

$f or nFi el d: A FormField object.

Returns: A Label object.
function addFornFi el d($fornField, $label ="")
Description: Adds a form field to this option so this option can associate with another form
field.
Parameters:

$f or nFi el d: A FormField object.
$| abel : A Label object. Optional.

Returns: Nothing

Page

This class represents a page on the user interface. It also encapsulates all information about
the page. For example, a Stylist object and an | 18n object resides in each Page object.

Applicability

This class is applicable to every page on the user interface that uses UIFC.

Appendix A: User Interface Foundation Classes A—47

Usage

All UIFC pages must have one and only one Page object. All t oHt ml () calls of any
Ht Ml Conponent must reside within the t oHeader Ht nl () and t oFoot er Ht i () calls of
the Page object. Otherwise, undefined results may happen.

Public Methods

function Page($stylist, $i18n, $formAction)
Description: Constructor.
Parameters:
$stylist: A Stylist object that defines the style.
$i 18n: An | 18n object for internationalization.

$f or mAct i on: The action of the Form object for this Page. Optional.

function get Form()
Description: Gets the form embedded in the page.
Parameters:None.

Returns: A Form object.

function getl18n()
Description: Gets the | 18n object used to internationalize this page.
Parameters:None.
Returns: An | 18n object.

See Also: set 1 18n() .

A—48 Appendix A: User Interface Foundation Classes

function set OnLoad($js)
Description: Sets JavaScript to be performed when the page loads.
Parameters:
$j s: A string of JavaScript code.

Returns: Nothing

function getStylist()
Description: Gets the stylist that stylizes the page.
Parameters:None.
Returns: A Stylist object.

See Also: set Stylist().

function setStylist($stylist)
Description: Sets the stylist that stylizes the page.
Parameters:
$stylist: A Stylist object that defines the style.
Returns: Nothing

See Also: get Stylist().

function get Subm t Action()
Description: Gets the form action that is used to submit the form.
Parameters:None.

Returns: A string.

Appendix A: User Interface Foundation Classes A—49

function get Submi t Target ()
Description: Gets the target of the embedded form to submit to.
Parameters:None.
Returns: A string.

See Also: set Subni t Tar get () .

function set Submit Tar get ($t arget)
Description: Sets the target of the embedded form to submit to.
Parameters:
$t ar get : A string.
Returns: Nothing

See Also: get Submi t Tar get ().

function toHeaderH m ($style = "")
Description: Translates the header of the page into an HTML representation.
Parameters:None.
Parameters:

$styl e: The style of the representation in a Style object. Optional. If not supplied,
default style is used.

Returns: The HTML that represents the field.

See Also: t oFoot er Ht mi () .

A—50 Appendix A: User Interface Foundation Classes

function toFooterH m ($style = "")

Description: Translates the footer of the page into an HTML representation.

Parameters:

$styl e: The style of the representation in a Style object. Optional. If not supplied,
default style is used.

Returns: The HTML that represents the field.

See Also: t oHeader Ht i ().

PagedBlock

The class PagedBl ock represents a block that has multiple pages with each of them having
their own form fields. The states of form fields on different pages are automatically
maintained.

Applicability

Use this class to separate functionally cohesive, but context distant information. For example,
use it to group basic information into one page and advanced information in another. Do not
use this class simply for navigation purposes, use the navigation system instead.

Usage

To use this class for just one page, create a PagedBl ock object and add form fields without
specifying any page IDs. To support multiple pages, after constructing an object, add pages to
it. Afterwards, add form fields to the pages. The page to display can be selected by using

set Sel ect edl d(), but this is optional. The page to display is maintained automatically
based on user interaction. Changed form field values are passed back to the pages as

$f or nFi el dI d. After submission, $pagel d for visited pages is set to true. Use

get St art Mar k() and get EndMar k() to put HTML code outside the scope of PHP into the
context of pages.

Extends: The class PagedBl ock extends Ht nl Conponent .

Appendix A: User Interface Foundation Classes A—51

Implements: The class PagedBl ock implements page and t oHTM..

Public Methods

functi on PagedBl ock($page, $id, $Iabel)
Description: Constructor.
Parameters:
$page: The Page object this block resides in.
$i d: An identifier in string.

$| abel : A Label object for the block title.

function getButtons()
Description: Gets all buttons added to the block.
Parameters:None.
Returns: An array of Button objects.

See Also: addBut t on() .

function addButton($button)
Description: Adds a button to the list.
Parameters:
$but t on: A Button object.
Returns: Nothing

See Also: get Butt on() .

A—52 Appendix A: User Interface Foundation Classes

function get EndMar k($pagel d)

Description: Gets the mark for marking the end of an HTML section specifically for a page.
This is useful for adding page specific HTML.

Parameters:
$pagel d: The ID of the page in string.
Returns: The mark in string.

See Also: get St art Mar k().

function get FornFi el ds()
Description: Gets all the form fields of the block.
Parameters:None.
Returns: An array of FormField objects.

See Also: addFor nFi el d() .

function addFornfiel d($fornField, $label ="", $pageld ="")
Description: Adds a form field to this block.
Parameters:
$f or nFi el d: A FormField object.

$l abel : A Label object. Optional. Hidden form fields are not shown and therefore do not
need labels.

$pagel d: The ID of the page the form field is in; optional if there is only one page.
Returns: Nothing

See Also: get FornFi el d().

Appendix A: User Interface Foundation Classes A—53

function getDividers()
Description: Gets all dividers added to the block.
Parameters:None.
Returns: An array of Label objects.

See Also: addDi vi der ().

functi on addDi vi der ($l abel = "", $pageld ="")
Description: Adds a divider.
Parameters:
$l abel : A Label object. Optional.
$pagel d: The ID of the page the form field is in; optional if there is only one page.
Returns: Nothing

function get FornFi el dLabel ($f or nFi el d)
Description: Gets the label for a form field.
Parameters:

$f or nFi el d: A FormField object.
Returns: A Label object.

See Also: get Di vi ders().

functi on get FornFi el dPagel d($f or nFi el d)
Description: Gets the page ID of a form field.
Parameters:

$f or nFi el d: A FormField object.

Returns: The ID of the page in string.

A—54

Appendix A: User Interface Foundation Classes

function getLabel ()

Description: Gets the label of the block.

Parameters:None.
Returns: A label in string.

See Also: set Label ().

function setLabel ($l abel)
Description: Sets the label of the block.
Parameters:
$l abel : A label in string.
Returns: Nothing

See Also: get Label ().

function getld()
Description: Gets the ID of the block.
Parameters:None.
Returns: An identifier in string.

See Also: set |1 d().

function setld($id)
Description: Sets the ID of the block.
Parameters:
$i d: An identifier in string.
Returns: A string

See Also: get 1 d() .

Appendix A: User Interface Foundation Classes

A—55

function get Pagel ds()
Description: Gets all the page IDs.
Parameters:None.
Returns: An array of IDs in string.

See Also: addPage() .

function get PagelLabel ($pagel d)
Description: Gets the label of a page.
Parameters:
$pagel d: The ID of the page in string.

Returns: A Label object.

function addPage($pagel d, $I abel)

Description: Adds a page into the paged block.

Parameters:
$pagel d: The ID of the page in string.
$l abel : A Label object for the page.

Returns: Nothing

function get Sel ectedl d()
Description: Gets the ID of the selected page.
Parameters:None.
Returns: An identifier in string.

See Also: set Sel ect edl d() .

A—56 Appendix A: User Interface Foundation Classes

function set Sel ect edl d($sel ect edl d)
Description: Sets the ID of the selected page.
Parameters:

$sel ect edl d: An identifier in string.
Returns: Nothing

See Also: get Sel ect edl d() .

function get Start Mar k($pagel d)
Description: Gets the mark for marking the start of an HTML section specifically for a page.
Parameters:
$pagel d: The ID of the page in string.

Returns: The mark in string.

Password

The class Passwor d extends For nFi el d.

Public Methods

functi on Passwor d($page, $stylist, $id, $val ue, $invalidMessage, $enptyMessage
= " II)

Description: Constructor.

Parameters:
$page: The Page object this form field resides in.
$stylist: A Stylist object that defines the style.

$i d: The identifier of this object.

Appendix A: User Interface Foundation Classes A—57

$val ue: The default value.
$i nval i dMessage: The message to be shown upon invalid input. Optional.

$enmpt yMessage: The message to be shown upon empty input if the field is not optional.
Optional.

function isConfirm))
Description: Checks if the confirm field is shown.
Parameters:None.
Returns: True if a confirm field is shown; false otherwise

See Also: set Confirn().

function set Confirm $isConfirm
Description: Sets the configuration flag.
Parameters:
$i sConfirm True if a confirm field is shown; false otherwise.
Returns: Nothing

See Also: i sConfirn().

RemoveButton

This class creates a Renbve But t on. The application causes a Renpve But t on action when
the button is clicked.

Extends: The class RenoveBut t on extends Butt on.

Implements: The class RenpveBut t on implements HTM_.Conponent , St yl i sh, and
Col | at abl e.

See Also: AddBut t on, BackBut t on, Cancel But on, Det ai | But t on, | mageBut t on,
Modi f yBut t on, Mul ti Butt on, SaveButton, Uninstall Button.

A—58 Appendix A: User Interface Foundation Classes

Public Methods

functi on RenpbveButton($page, $action)
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.

$act i on: The string used within HREF attribute of the A tag.

SaveButton

This class creates a Save Butt on. The application causes a Save Butt on action when the
button is clicked.

Extends: The class SaveBut t on extends But t on.

Implements: The class SaveBut t on implements HTM.Conponent , St yl i sh, and
Col | at abl e.

See Also: AddBut t on, BackBut t on, Cancel But on, Det ai | But t on, | mageBut t on,
Modi fyButt on, Mul ti Button, RenoveButton, Uni nstal | Button.

Public Methods

function SaveButton($page, $action)
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.

$act i on: The string used within HREF attribute of the A tag.

Appendix A: User Interface Foundation Classes A—59

ScrollList

The class Scr ol | Li st extends Ht ml Conponent . The class represents a list of similar
elements to be displayed on pages. This class automatically maintains the number of pages
and determines which one to display.

Applicability
Use this class when a list of similar elements needs to be represented. Do not use this class for
list of different elements.

Usage

This class simply constructs a Scr ol | Li st object with a list of entry labels specified. You
can add entries using the addEnt r y() method.

NOTE: Remember to keep the number of elements of each entry the same as
the number of entry labels.

Public Methods

function ScrollList($page, $id, $label, $entrylLabels, $sortables = array())
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.
$i d: An identifier in string.
$| abel : A Label object for the list.
$entryLabel s: An array of Label objects for the entries.

$sort abl es: An array of indexes of the sortable components. Optional.

A—60 Appendix A: User Interface Foundation Classes

function getAlignments()
Description: Gets the horizontal alignments of items in entries.
Parameters:None.
Returns: An array of alignment strings.

See Also: set Al i gnnent s() .

function setAlignments($alignnents)
Description: Sets the horizontal alignments of items in entries.
Parameters:

$al i gnment s: An array of alignment strings, for example, "",1 ef t ,center, orri ght.
"" and empty array element means left. First alignment string for the first item in entries,
second alignment string for the second item in entries and so forth.

Returns: Nothing

See Also: get Al i gnnents().

function get Col umwW dt hs()
Description: Gets the column widths for items in entries.
Parameters: None.

Returns: An array of widths in integer (pixel) or string (for example, "60%"). The first
element is for label and the second element is for form field.

See Also: set Col umW dt hs() .

Appendix A: User Interface Foundation Classes A—61

function set Col uimW dt hs($col utmmW dt hs)
Description: Sets the widths of label and form field.
Parameters:

$wi dt hs: An array of widths in numbers (for example, 100), percentage strings (for
example, 25%), ". ", or empty elements, which means no defined width.

Returns: Nothing

See Also: get Col umW dt hs() .

function addButton($button)
Description: Adds a button to the list.
Parameters:
$but t on: A Button object.
Returns: Nothing

See Also: get But t ons() .

function setSelectAll ($selectAll = true)

Description: When sel ect al | is on and entries can be selected, a widget is available on
the list to select or unselect all entries at once.

Parameters:
$sel ect ALl : Trueif sel ect all isenabled; false otherwise.
Returns: Nothing

See Also: i sSel ect All ().

A—62 Appendix A: User Interface Foundation Classes

function isSelectAll ()
Description: Gets the sel ect al | flag.
Parameters:None.
Returns: True if sel ect al | is enabled; false otherwise.

See Also: set Sel ect Al l ().

function set Enpt yMessage($nsg = "")
Description: Sets the message to display when the list is empty.
Parameters:
$nmsg: An |l 18n tag of the form [[donmi n. messagel d]] for interpolation.

Returns: Nothing

function getDuplicateLimt()
Description: Gets the upper limit of duplicate buttons at the end of the list.
Parameters:None.
Returns: The limit in integer.

See Also: set Dupl i cateLimt().

function setDuplicateLimt($duplicateLimt)
Description: Sets the upper limit of duplicate buttons at the end of the list.
Parameters:
$dupl i cat eLi mi t: The limit in integer.
Returns: Nothing

See Also: get Dupl icateLimt().

Appendix A: User Interface Foundation Classes A—63

function addEntry($entry, $entryld ="", $entrySelected = fal se, $entrylndex =
_l)

Description: Adds an entry to the list.

Parameters:
$ent ry: An array of objects that consist the entry.
$entryl d: An unique ID for the entry. Optional. If supplied, the entry can be selected.
$ent rySel ect ed: True if the entry is selected; false otherwise. Optional.

$ent ryNunber : The index of the entry on the list. Optional. If not supplied, the entry is
appended to the end of the list.

Returns: Nothing

function get EntryNum()
Description: Gets the number of entries in the list.
Parameters:None.
Returns: An integer.

See Also: set Ent r yNum(), addEntry().

function set EntryNum($entryNum

Description: Tells the list how many entries are there in the list. This is useful when you use
addEnt ry() only to add a section of the list, so you need to tell the list how many entries are
really there.

Parameters:
$entryNum An integer.
Returns: Nothing

See Also: get Ent ryNun(), addEntry().

A—64 Appendix A: User Interface Foundation Classes

function set EntryCount Tags($si ngul ar, $plural)

Description: Sets the i 18n message tags used in entry count. Message tags have the format
of [[<domai n>. <nmessagel d>]] .

Parameters:
$si ngul ar: A string message tag used when only one entry is listed.
$pl ural : A string message tag used when many or zero are listed.

Returns: Nothing

function getEntries()
Description: Gets all the entries added to the list.
Parameters:None.
Returns: An array of entries. Each entry is an array of Ht ml Conponent objects.

See Also: addEntry() .

function get EntrylLabel s()
Description: Gets the labels for each item of the entries.
Parameters:None.
Returns: An array of Label objects.

See Also: set EntryLabel s().

function setEntrylLabel s($entryLabel s)
Description: Sets the labels for each item of the entries.
Parameters:
$ent ryLabel s: An array of Label objects.
Returns: Nothing

See Also: get EntryLabel s().

Appendix A: User Interface Foundation Classes

A—65

function getld()
Description: Gets the ID of the block.
Parameters:None.
Returns: An identifier in string.

See Also: set 1d() .

function set!d($id)
Description: Sets the ID of the block.
Parameters:
$i d: An identifier in string.
Returns: Nothing
See Also: get 1 d() .

function getlLabel ()

Description: Gets the label of the block.

Parameters:None.
Returns: A label in string.

See Also: set Label ().

function setLabel ($l abel)
Description: Sets the label of the block.
Parameters:
$l abel : A label in string.
Returns: Nothing

See Also: get Label ().

A—66

Appendix A: User Interface Foundation Classes

function getLength()

Description: Gets the maximum length of pages on the list.
Parameters:None.
Returns: An integer.

See Also: set Lengt h() .

function setLengt h($l ength)

Description: Sets the maximum length of pages on the list. For example, if length is set to 10,
and there are 25 entries, the list is presented in 3 pages of 10, 10 and 5 entries.

Parameters:
$l engt h: An integer.
Returns: Nothing

See Also: get Lengt h() .

function get Pagel ndex()

Description: Gets the index of the page the list is presenting.
Parameters:None.
Returns: An integer.

See Also: set Pagel ndex(), setlLength().

function set Pagel ndex($pagel ndex)

Description: Sets the index of the page the list is presenting.
Parameters:

$pagel ndex: An integer.
Returns: Nothing

See Also: get Pagel ndex(), set Length().

Appendix A: User Interface Foundation Classes A—67

function isSortEnabl ed()
Description: Checks sorting is done by the list.
Parameters:None.
Returns: True if sorting is done by the list; false otherwise.

See Also: set Sort Enabl ed() .

function set Sort Enabl ed($sort Enabl ed)

Description: Enables or disables sorting done by the list. This method is useful if entries
supplied are already sorted.

Parameters:
$sort Enabl ed: True if sorting is done by the list; false otherwise.
Returns: Nothing

See Also: i sSort Enabl ed() .

function get Sortabl es()
Description: Gets the sortable components of the entries.
Parameters:None.
Returns: An array of indexes of the sortable components.

See Also: set Sort abl es().

function set Sortabl es($sort abl es)
Description: Sets the sortable components of the entries.
Parameters:
$sort abl es: An array of indexes of the sortable components.
Returns: Nothing

See Also: get Sor t abl es().

A—68

Appendix A: User Interface Foundation Classes

function get Sortedl ndex()

Description: Gets the index of the components that are sorted.
Parameters:None.
Returns: An integer.

See Also: set Sor t edl ndex() .

function set Sortedl ndex($sort edl ndex)

Description: Sets the index of the components that are sorted. This method always overrides
user selection. Use set Def aul t Sort edl ndex() if overriding is not desired.

Parameters:
$sort edl ndex: An integer. If -1, no sorting is done.
Returns: Nothing

See Also: get Sor t edl ndex() .

function set Def aul t Sort edl ndex($sort edl ndex)

Description: Sets the index of the components that are sorted. If user has made selections,
this method does not override it.

Parameters:
$sort edl ndex: An integer. If -1, no sorting is done.

Returns: Nothing

function get Sort Order()

Description: Gets the order of sorting.
Parameters: None.
Returns: ascendi ng or descendi ng.

See Also: set Sort Order ().

Appendix A: User Interface Foundation Classes A—69

function setSortOrder($sortOrder = "ascendi ng")
Description: Sets the order of sorting.
Parameters:
$sort Or der : ascendi ng or descendi ng. The default is optional and ascending.
Returns: Nothing

See Also: get Sort Order ().

function sortEntries(&entries)
Description: Sorts the entries when displaying the list.
Parameters:
$entri es: The array of entries to sort.

Returns: Nothing

function toHtm ($style = "")
Description: Translates into an HTML representation.
Parameters:

$styl e: The style of the representation in a Style object. Optional. If not supplied,
default style is used.

Returns: The HTML that represents the object or "" if pagel ndex is out of range.

SetSelector

The class Set Sel ect or extends For nFi el d.

A—70 Appendix A: User Interface Foundation Classes

Public Methods

function Set Sel ector ($page, $id, $value, S$entries, $enptyMessage)
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.
$i d: The identifier of this object.
$val ue: An ampersand (&) separated list for the value set.
$entries: An ampersand (&) separated list for the entry set.

$enmpt yMessage: The message to be shown upon empty input, if the field is not optional.
Optional.

function getEntriesLabel ()
Description: Gets the label of the entry set.
Parameters:None.
Returns: A Label object.

See Also: set Entri esLabel ().

function setEntriesLabel ($entriesLabel ="")
Description: Sets the label of the entry set.
Parameters:
$entri esLabel : A Label object.
Returns: Nothing

See Also: get Entri esLabel ().

Appendix A: User Interface Foundation Classes A—T71

function getVal ueLabel ()
Description: Gets the label of the value set.
Parameters:None.
Returns: A Label object.

See Also: set Val ueLabel ().

function setVal ueLabel ($val ueLabel = "")
Description: Sets the label of the value set.
Parameters:
$val ueLabel : A Label object.
Returns: Nothing

See Also: get Val ueLabel ().

function getEntries()
Description: Gets the entry set to choose from.
Parameters:None.
Returns: An ampersand (&) separated list for the entry set.

See Also: set Entries().

function setEntries($entries)
Description: Sets the entry set to choose from.
Parameters:
$entries: Anampersand (&) separated list for the entry set.
Returns: Nothing

See Also: get Entries().

A—T72 Appendix A: User Interface Foundation Classes

SnmpCommunity

The class SnnmpConmmuni t y extends For nFi el d.

Public Methods

function toHtm ($style = "")
Description: Translates into an HTML representation.
Parameters:

$styl e: The style of the representation in a Style object. Optional. If not supplied,
default style is used.

Returns: The HTML that represents the field.

StatusSignal

The class St at usSi gnal extends Ht m Conponent .

Public Methods

function StatusSignal ($page, $status, $url ="")
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.

$st at us: A string. Possible values are noMbni t or, di sabl ed, none, nor mal ,
pr obl em sever eProbl em new, repl i ed, ol d, success, fail ure, pendi ng.

$url: The URL to which to link. Optional.

Appendix A: User Interface Foundation Classes A—T73

function get Status()
Description: Gets the status.
Parameters:None.
Returns: A string.

See Also: set St at us() .

function set Status($st at us)
Description: Sets the status.
Parameters:

$st at us: A string. Possible values are noMbni t or, di sabl ed, none, nor mal ,
probl em sever eProbl em new, repli ed, ol d, success, fail ure, pendi ng.

Returns: Nothing

See Also: get St at us() .

function setUrl ($url)
Description: Sets the URL to link to.
Parameters:
$ur |l : The URL to link to.

Returns: Nothing

function setDescri bed($descri bed)
Description: Describes the signal to users if set to true.
Parameters:
$descri bed: True if described; false otherwise.
Returns: Nothing

See Also: i sDescri bed().

A—T74 Appendix A: User Interface Foundation Classes

function isDescribed()
Description: Checks if the signal is described to users.
Parameters:None.
Returns: True if described; false otherwise.

See Also: set Descri bed() .

NOTE: For information on the Style class, see the Style appendix.

Stylish

The class St yl i sh gets the default style; subclasses should always override this style.

Public Methods

function getDefaul tStyle($stylist)
Description: Gets the default style.
Parameters:
$stylist: A Stylist object that defines the style.

Returns: A Style object.

Stylist

The class St yl i st gets a list of all the style resources that are available.

Appendix A: User Interface Foundation Classes A—T75

Public Methods

function get Al | Resources($l ocal ePref erence)
Description: Gets a list of all the style resources available.
Parameters:
$l ocal ePr ef erence: A comma-separated list of preferred locale.

Returns: A hash of style resource ID to name.

function setResource($styl eResource, $locale)
Description: Sets the style resource.
Parameters:
$styl eResour ce: An identifier in string that identifies the style resource.
$l ocal e: A locale string for style localization.

Returns: Nothing

function setStyl e($style)
Description: Sets a Style object to the stylist.
Parameters:

$styl e: The style of the representation in a Style object. Optional. If not supplied,
default style is used.

Returns: Nothing

See Also: get Styl e() .

A—T76 Appendix A: User Interface Foundation Classes

function getStyle($styleld, $stylevariant ="")

Description: Gets a Style object with the specified i d and vari ant . If no style of the i d and
vari ant can be found, only the i d is used. If no style of the i d can be found, an empty style
is returned.

Parameters:
$styl el d: An identifier in string that identifies the style.
$styl eVari ant : The variant of the style in string.

Returns: A Style object with properties if the style can be found; empty Style object
otherwise.

See Also: set Styl e() .

function _Stylist_getResourcel d($file, $local ePreference)
Description: Gets the style resource ID from a file.
Parameters:
$fil e: The path of the file in string.
$l ocal ePr ef erence: A comma-separated list of preferred locale.

Returns: A style resource ID in string if success; false otherwise.

function _Stylist_load($styl eResource, $locale)
Description: Loads in a style from st yl eDi r defined in the configuration file.
Parameters:

$styl eResour ce: An identifier in string that identifies the style resource.

Style <styleDir>/<styl eResource>. xm is |oaded

$l ocal e: A locale string for style localization; it returns a hash containing all the style
information or empty hash if failed, including key i d contains the i d in string, key
vari ant contains the variant in string, and key pr oper t y contains properties in a hash.

Returns: Nothing

Appendix A: User Interface Foundation Classes A—T77

TextBlock

The class Text Bl ock extends For nFi el d.

Public Methods

function TextBl ock($page, $id, $value = "", S$enptyMessage = "")
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.
$i d: The identifier of this object.
$val ue: A text string. Optional.

$enpt yMessage: The message to be shown upon empty input if the field is not optional.
Optional.

function getHei ght()
Description: Gets the height or number of rows.
Parameters:None.
Returns: An integer.

See Also: set Hei ght ().

function set Hei ght ($hei ght)
Description: Sets the height or number of rows.
Parameters:
$hei ght : An integer.

Returns: Nothing

A—T78 Appendix A: User Interface Foundation Classes

See Also: get Hei ght ().

function get Wdth()
Description: Gets the width or number of columns.
Parameters:None.
Returns: An integer.

See Also: get Wdt h() .

function set Wdth($w dth)
Description: Sets the width or number of columns.
Parameters:
$wi dt h: The minimum width.
Returns: Nothing

See Also: get Wdt h() .

function setWap($val = fal se)
Description: Sets to wrap or not to wrap text.
Parameters:
$val : True to wrap; false otherwise.
Returns: Nothing

See Also: i sWap() .

Appendix A: User Interface Foundation Classes A—T79

function i sWap()
Description: Checks if text should be wrapped or not.
Parameters:None.
Returns: True to wrap; false otherwise.
Returns: Nothing

See Also: set Wap() .

TextField

The class Text Fi el d extends For nFi el d.

Public Methods

function TextFiel d($page, $id, $value, $invalidMessage, $enptyMessage)
Description: Constructor.
Parameters:
$page: The Page object this form field resides in.
$i d: The identifier of this object.
$val ue: The default value.
$i nval i dMessage: The message to be shown upon invalid input. Optional.

$enpt yMessage: The message to be shown upon empty input if the field is not optional.
Optional.

A—80 Appendix A: User Interface Foundation Classes

function setSize($size)
Description: Sets the size or number of columns.
Parameters:
$si ze: An integer.

Returns: Nothing

function set MaxLengt h($l en)
Description: Sets the maximum length or characters the field can take.
Parameters:
$l en: An integer.

Returns: Nothing

TextList

The class Text Li st extends For nFi el d.

TimeStamp

The class Ti neSt anp extends For nFi el d.

function Ti meStanmp($page, $id, $val ue)
Description: Constructor.
Parameters:
$page: The Page object this form field resides in.
$i d: The identifier of this object.

$val ue: The number of seconds since Epoch.

Appendix A: User Interface Foundation Classes A—81

function get Fornmat ()
Description: Gets the format of the time stamp.
Parameters:None.
Returns: Possible values are dat e, ti ne, dat eti ne.

See Also: set Fornat () .

function set Format ($f or mat)
Description: Sets the format of the time stamp.
Parameters:
$f or mat : Possible values are dat e, ti ne, dat et i me.
Returns: Nothing

See Also: get f ormat () .

TimeZone

The class Ti meZone extends For nFi el d.

Public Methods

function Ti meZone($page, $id, $val ue)
Description: Constructor.
Parameters:
$page: The Page object this form field resides in.
$i d: The identifier of this object.

$val ue: The number of seconds since Epoch.

A—82 Appendix A: User Interface Foundation Classes

UninstallButton

This class creates an Uni nst al | But t on. The application causes an Uni nstal | Button
action when the button is clicked.

Extends: The class Uni nst al | But t on extends But t on.

Implements: The class Uni nst al | But t on implements HTM_Conponent , Styl i sh, and
Col | at abl e.

See Also: AddBut t on, BackBut t on, Cancel But on, Det ai | But t on, | mageBut t on,
Modi f yBut t on, Mul t i But t on, RenpoveBut t on, SaveBut t on.

Public Methods

function Uninstall Button($page, $action)
Description: Constructor.
Parameters:
$page: The Page object in which this object resides.

$act i on: The string used within HREF attribute of the A tag.

Url

The class Ur | extends For nFi el d.

Appendix A: User Interface Foundation Classes A—83

Public Methods

function Ul ($page, $id, $value, $label ="", $target ="", $invali dvessage =
I|II’ $errpty,\kssage = I|II)

Description: Constructor.
Parameters:
$page: The Page object this form field resides in.
$i d: The identifier of this object.
$val ue: The URL.
$l abel : A label in string. Optional.
$target: Thet ar get attribute of the A tag. Optional.
$i nval i dMessage: The message to be shown upon invalid input. Optional.

$enpt yMessage: The message to be shown upon empty input if the field is not optional.
Optional.

function getLabel ()
Description: Gets the label.
Parameters:None.
Returns: A label in string.

See Also: set Label ().

function setLabel ($l abel)
Description: Sets the label.
Parameters:
$| abel : A label in string.

Returns: Nothing

A—84 Appendix A: User Interface Foundation Classes

See Also: get Label ().

function getTarget()
Description: Gets the target.
Parameters:None.
Returns: The t ar get attribute of the Atag.

See Also: set Target ().

function set Target ($target)
Description: Sets the target.
Parameters:
$target: Thet ar get attribute of the A tag.
Returns: Nothing

See Also: get Target ().

UrlList

The class Ur | Li st extends For nFi el d.

Appendix A: User Interface Foundation Classes A—85

Public Methods

function Ul List($page, $id, $value, $labels = array(), $targets = array(),
$i nval i dMessage, $enptyMessage)

Description: Constructor.
Parameters:
$page: The Page object this form field resides in.
$i d: The identifier of this object.
$val ue: An URL encoded list of URLs.
$l abel s: An array of labels in string. Optional.
$t ar get s: An array of target attributes for the A tag. Optional.
$i nval i dMessage: The message to be shown upon invalid input. Optional.

$enpt yMessage: The message to be shown upon empty input if the field is not optional.
Optional.

function getLabel s()
Description: Gets the labels.
Parameters:None.
Returns: An array of label strings.

See Also: set Label s().

function setLabel s($l abel s)
Description: Sets the labels.
Parameters:
$| abel s: An array of labels in string.

Returns: Nothing

A—86 Appendix A: User Interface Foundation Classes

See Also: get Label s().

function get Targets()
Description: Gets the t ar get s attribute.
Parameters:None.
Returns: The t ar get s attribute.

See Also: get Target s().

function set Target s($targets)
Description: Sets the t ar get s attribute.
Parameters:
$targets: Thet arget s attribute.

Returns: Nothing

UserName

The class UserName extends For nFi el d.

UserNamelList

The class User NaneLi st extends For nFi el d.

VerticalCompositeFormField

The class Ver ti cal Conposi t eFor nFi el d extends Conposi t eFor nFi el d.

Appendix B

Utility Classes

This appendix describes three utility classes:
* ArrayPacker
* FError
®* Server Scri pt Hel per

These classes work in conjunction with the UIFC classes to help you create user interface
pages.

ArrayPacker

Ar rayPacker provides a library of functions for packing and unpacking arrays or hashes to
or from strings. The functions use CCE preferred array packing format, which is URL-
encoded elements delimited by ampersands (&). For example, an array of f i r st, seco&d,
and _t hi rd is packed into & i r st &eco¥26d&_t hi r d&.

Applicability

This class can be used anywhere where arrays or hashes need to be acquired from or put into
CCE.

Appendix B: Utility Classes

Public Methods

function arrayToString($array)
Description: Converts an array to a string.
Parameters:
$array: An array of strings.

Returns: A packed array in string.

function stringToArray($string)
Description: Converts a string to an array.
Parameters:
$string: A packed array in string.

Returns: An array of strings.

function islnArrayString($needl e, $hayStack)
Description: Checks if a string is in an array.
Parameters:
$needl e: The string to find.
$haySt ack: A packed array in string.

Returns: True if string found; false otherwise.

Appendix B: Utility Classes

function hashToStri ng($array)

Description: Converts a hash (associative array) to a string. For example, [" f 00"] =
"bar", [1] = "one" => "&f oo=bar&l=one&"

Parameters:
$array: A hash.

Returns: A packed hash in string.

function stringToHash($string)

Description: Converts a string to a hash (associative array). For example,
" & oo=bar &l=one&" => ["foo"] = "bar", [1] = "one"

Parameters:
$string: A packed hash in string.
Returns: A hash.

Error

This class represents an error.

Public Methods

function Error($nessage, $vars = array())
Description: Constructor.
Parameters:
$nmessage: An internationalizable string, that is, it can have [[domai n. i d]] tags.

$var s: A hash of variable names to values for localizing the string.

B—4

Appendix B: Utility Classes

function get Message()
Description: Gets the error message.
Parameters:None.
Returns: An internationalizable string.

See Also: set Message() .

Optional Methods

functi on set Message($nessage, $vars = array())
Description: Sets the error message.
Parameters:
$nmessage: An internationalizable string, that is, it can have [[domai n. i d]] tags.
$var s: A hash of variable names to values for localizing the string.

Returns: Nothing

function getVars()
Description: Gets the hash for string localization.
Parameters:None.
Returns: A hash of variable names to values for localizing the message string. Optional.

See Also: set Message() .

Appendix B: Utility Classes B—5

function setVar($key, $val)
Description: Adds a variable to the string localization hash.
Parameters:
$key: The key of the variable in string.
$val : The value of the variable in string.
Returns: Nothing

See Also: get Var s() .

ServerScriptHelper

This class is designed to facilitate the development of server-side scripts. It is a library of
commonly used functions.

Applicability

This class is applicable to server-side scripts that use session, UIFC, | 18n, and CCE.

Usage

This class constructs a new Ser ver Scri pt Hel per at the start of every server-side script. It
automatically gets session information, identifies the logged-in user, and connects to CCE to
find out more information about the user. The get method can be used to get information
about the script.

NOTE: Always call dest ruct or () at the end of the scripts.

B—6 Appendix B: Utility Classes

Public Methods

function ServerScri pt Hel per ($sessionld = "", $loginNane = "")
Description: Constructor.
Parameters:

$sessi onl d: The session ID in string. Optional. The global $sessi onl d is used if a
value is not supplied.

$l ogi nNane: The login name of the user in string. Optional. The global $I ogi nNane is
used if a value is not supplied.

function destructor()
Description: Destructor.

Parameters: None.

function getFile($fil enane)

Description: Returns the contents of a file using the Unix permissions granted to the current
CCE user.

Parameters:
$fi | enanme: The filename of the file to be opened.

Returns: The contents of the file.

functi on popen($progran)
Description: Opens a read-only stream wrapped by CCE.
Parameters:
$cnd: A string containing the program to execute, including the path and any arguments.

Returns: A file handle to be read from.

Appendix B: Utility Classes B—7

function shell ($cmd, &$out put)
Description: Allows one to execute a program as the currently logged-in user.
Parameters:
$cnd: A string containing the program to execute, including the path and any arguments.
&S$out put : Output variable that picks up the output sent by the program.

Returns: 0 on success; error number on error.

function fork($cnd)

Description: Allows one to fork a program as the currently logged-in user.

NOTE: No interaction between the called program and the caller can be made.

Parameters:
$cnd: A string containing the program to execute, including the path and any arguments.

Returns: 0 on success; error number on error.

function get AccessRi ghts()
Descriptions: Gets an array of access rights.
Parameters: None.

Returns: An array of access rights in strings.

function getCcedient()
Description: Gets a connected and authenticated Cced i ent .
Parameters: None.

Returns: A CceC i ent object.

Appendix B: Utility Classes

function getHt nl Conponent Fact or y($i 18nDomai n, $f ormAction = "")
Description: Gets an Ht ml Conponent Fact ory object to construct Ht nl Conponent s.
Parameters:
$i 18nDomai n: The | 18n domain used for construction.
$f or mAct i on: The action of the form in which Ht i Conponent s reside.

Returns: An Ht nl Conponent Fact or y object.

function toErrorJavascript($errors)
Description: Represents errors in JavaScript.
Parameters:
$errors: An array of Error objects.

nn

Returns: JavaScript if error occurred or "" otherwise.

function getl18n($donmain = , $httpAccept Language = "")
Description: Gets the right | 18n object.
Parameters:
$domai n: the domain of the | 18n object. Optional.

$ht t pAccept Language: The HTTP_ACCEPT_LANGUAGE header. Optional. Global
HTTP_ACCEPT_LANGUAGE is used if a value is not supplied.

Returns: An | 18n object.

Appendix B: Utility Classes B—9

function getLocal ePreference($httpAccept Language = "")

Description: Gets the preferred locale specified by the logged-in user if br owser is
preferred, locale from HTTP_ACCEPT_LANGUAGE is used. If no locale is preferred, use the
def aul t Local e specified in ui . cf g.

Parameters:

$ht t pAccept Language: The HTTP_ACCEPT_LANGUAGE header. Optional. Global
HTTP_ACCEPT_LANGUAGE is used if a value is not supplied.

Returns: A list of locales in string separated by commas.

function getLogi nNane()
Description: Gets the name of the logged-in user.
Parameters: None.

Returns: A login name in string.

function get Styl ePreference()

Description: Gets the style preferred by the logged-in user. If user has no preference or if the
preference is not available, use any style available on the system.

Parameters:None.

Returns: A style ID in string.

function getStylist()

Description: Gets the St yl i st who gives correct styles according to the style preference of
the logged-in user.

Parameters:None.

Returns: A Styl i st object.

B—10 Appendix B: Utility Classes

function toHandl erHt ml ($returnUrl = "", S$errors = array())
Description: Gets the HTML page to be printed out by Ul page handlers.
Parameters:
$returnUrl: The URL the handler returns to. Optional.
$errors: An array of Error objects for errors occurred within the handler. Optional.

Returns: The HTML page to be printed out by UI page handlers.

function get CLi st Styl eJavascri pt ()
Description: Gets JavaScript to set style for collapsible list.
Parameters:None.

Returns: JavaScript in string.

function get Fl owControl Styl eJavascript ()
Description: Gets JavaScript to set style for flow navigation.
Parameters:None.

Returns: JavaScript in string.

function getlnfoStyl eJavascript()
Description: Gets JavaScript to set style for info.
Parameters:None.

Returns: JavaScript in string.

get TabStyl eJavascri pt ()
Description: Gets JavaScript to set style for tab.
Parameters: None.

Returns: JavaScript in string.

Appendix B: Utility Classes B—11

function getTitleStyl eJavascript()
Description: Gets JavaScript to set style for title.
Parameters: None.

Returns: JavaScript in string.

B—12 Appendix B: Utility Classes

Appendix C

About Style

Style Files

This appendix provides a comprehensive description of the Style file. See “How Styles Work”
on page 3—10 for an overview.

Style files are XML files located in /usr/ sausal i t o/ ui / styl e/ . Each of these files
contains all the information about a certain style resource. These XML files can contain
styl eResour ce, st yl e, and property elements.
An example of a style file is good| ooki ng. xm :
<styl eResour ce nane="Good Looki ng">
<style id="Bl ock">
<property name="backgroundCol or" val ue="#FFFFFF"/ >

</styl e>

<style id="Label ">
<property name="col or" val ue="#FFFFFF"/ >
</styl e>
</ styl eResour ce>
Style files must be enclosed by a st yl eResour ce element. This element can have these
attributes:
name ::= internationalizable string

nane is the name of the style resource. The interpolate function of the | 18n module is used to
internationalize this string.

Within st yl eResour ce, there are st yl e elements. Each st y| e element describes one style.

Appendix C: About Style

The attributes of this element are:
id::=[a-zA-Z0-9_\-]1+

This is the identifier of the style.
variant ::=[a-zA-Z0-9_\-]+

NOTE: The vari ant attribute is optional. It acts as a secondary identifier of
the style. Each style in the same style file must have a unique i d and vari ant .

Within st yl e elements, there are pr opert y elements. Each of these elements describes a
property of the style. The attributes are:

name ::= [a-zA-Z0-9_\-]+
Each property is identified by a name.
target ::= [a-zA-Z0-9 \-]+
The t ar get attribute is optional. It acts as a secondary identifier and specifies the target to

which the property applies. Properties within a style element must not have the same names
and targets.

value ::= string

where string is the value of the property.

Supported Styles

Different properties have different value types. These are commonly used types for the
properties.

Boolean

String "true" or "false".

Appendix C: About Style Cc—3

Color

RGB format (for example, #RRGGBB) or names (for example, green).

Positive Integer

Positive integers including 0.

URL

A URL.

Common Properties

Common properties are properties used commonly in many different styles.

backgroundColor

Description: The background color of the page.

NOTE: Do not use with property backgr oundl mage.

Value Type: Color.

backgroundimage

Description: The background image of the page.

NOTE: Do not be use with property backgr oundCol or .

Value Type: URL.

c—4

Appendix C: About Style

borderThickness

Description: The pixel thickness of border.

Value Type: Positive integer.

color

Description: The color of text.

Value Type: Color.

fontFamily

Description: The family of the font that is used.

Value Type: The value type is the same as CSS-1 font-family definition. Generic families are
cursive, fantasy, monospace, sans-serif, and serif.

fontSize

Description: The size of the font.

Value Type: The value type is the same as CSS-1 font-size definition. For example, 12 point,
large or 120%.

fontStyle

Description: The style of the font.

Value Type: The value type is the same as CSS-1 font-style definition. For example, normal
or italic.

Appendix C:

About Style C—5

Styles

fontWeight

Description: The weight (boldness) of the font.

Value Type: The value type is the same as CSS-1 font-weight definition. For example, bold or
900.

textDecoration

Description: The decoration of text.

Value Type: The value type is the same as CSS-1 text-decoration definition. For example,
blink, line-through, none, or underline.

width

Description: The pixel width.

Value Type: Positive integer.

Bar

Description: In UIFC, the Bar class represents a bar chart.

Common Properties: col or, fontFamly, fontSize, fontStyle, fontWight,
t ext Decorati on.

Unique Properties: None

Cc—6 Appendix C: About Style

emptylmage
Description: Image for the empty portion of the bar.

Value Type: URL.

Possible Targets: None

endlmage

Description: Image for the end portion of the bar.
Value Type: URL.

Possible Targets: None

filledimage

Description: Image for the filled portion of the bar.
Value Type: URL.

Possible Targets: None

startimage

Description: Image for the start portion of the bar.
Value Type: URL.

Possible Targets: None

Button

Description: The But t on class represents a clickable button; see “Button” on page A—5.

Common Properties: backgr oundCol or, backgroundl mage, color, fontFamly,
fontSize, fontStyle, fontWight, textDecoration.

Appendix C: About Style CcC—7

CancelButton

Description: The Cancel But t on class represents a Cancel button; see “CancelButton” on
page A-8.

Common Properties: backgr oundCol or, backgroundl mage, col or, fontFamly,
fontSize, fontStyle, fontWight, textDecoration.

Label

Description: The Label class represents a text label with description; see “Label” on
page A-33.

Common Properties: backgr oundCol or, backgroundl mage, color, fontFamly,
fontSize, fontStyle, fontWight, textDecoration.

ModifyButton

Description: The Modi f yBut t on class represents a button for the modify action; see
“ModifyButton” on page A—36.

Unique Properties:
nodi f yl con: Icon for the button.
Value Type: URL.

Possible Targets: None

Appendix C: About Style

MultiChoice

Description: The Mul t i Choi ce class represents a widget for selecting choices; see
“MultiChoice” on page A—39. It has the following attributes:

Label : Represents labels of choice.
fornfi el dLabel : Represents labels of f or nf i el ds, if the choice has them.
subscri pt: Represents subscripts used in the Mul t i Choi ce class, such as opt i onal .

Common Properties: col or, fontFanily, fontSize, fontStyle, fontWight,
t ext Decor ati on.

Possible Targets: choi ceLabel , fornFi el dLabel, subscript.

Page
Description: The Page class represents a user interface page; see “Page” on page A—46.

Common Properties: backgr oundCol or, backgroundl mage, color, fontFamly,
fontSize, fontStyle, fontWight, textDecoration.

Parameters:
cent er: Defines if all the content of the page should be centered.
Value Type: Boolean.

Possible Targets: None

Appendix C: About Style c—9

PagedBlock

Description: The PagedBl ock class represents blocks that group form fields together; see
“PagedBlock” on page A—50. It has the following attributes:

di vi der Cel | : Represents the cells that act as dividers.

di vi der Label : Represents labels in divider cells.

f orm Represents the form.

Fi el dCel | : Represents cells in which form fields reside.

| abel Cel | : Represents cells in which form field labels reside.
| abel Label : Represents labels in the form field label cells.
subscri pt: Represents subscripts used in PagedBl ock class, such as opt i onal .
t abSel ect ed: Represents the selected tab.

t ab: Represents the tab.

Unsel ect ed: Represents tabs that are not selected.
titleCell: Represents the cell in which titl eLabel resides.
titl eLabel : Represents the label for the title.

Common Properties: backgr oundCol or, backgroundl mage, border Thi ckness,
color, fontFam ly, fontSize, fontStyle, fontWight, textDecoration.

Unique Properties:
bor der Col or: The color of the block border.

Possible Targets: di vi der Label , | abel Label, subscript, tabSelected,
tabUnsel ected, titlelLabel, w dth.

Value Type: Color.

c—10 Appendix C: About Style

dividerHeight

Description: The pixel height of block dividers. If there is content within the divider and it is
taller than this value, the divider is expanded to be greater than this value to fit the content.

Value Type: Positive integer.

Possible Targets: None

icon
Description: The icon image to indicate if the tab is selected or not.
Value Type: URL.
Possible Targets: t abSel ect ed, tabUnsel ect ed.
Password
Description: The Passwor d class represents a password. It has the following attribute:
subscri pt: Represents subscripts used in the Passwor d class, such as r epeat .
Common Properties: col or, fontFamly, fontSize, fontStyle, fontWeight,
t ext Decorati on.
Possible Targets: subscri pt.
RemoveButton

Description: The RenoveBut t on class represents a button for the remove action; see
“RemoveButton” on page A-57.

Unique Properties: None

Appendix C: About Style C—11

removelcon

Description: Icon for the button.
Value Type: URL.

Possible Targets: None

SaveButton

Description: The SaveBut t on class represents a button for the save action; see
“SaveButton” on page A—58.

Common Properties: backgr oundCol or, backgroundl mage, color, fontFamly,
fontSize, fontStyle, fontWight, textDecoration.

SetSelector

Description: The Set Sel ect or class represents a widget to select a subset out of a full set;
see “SetSelector” on page A—69.

Parameters:
addl con: The icon for the add button to add entries to the set.
Value Type: URL.

Possible Targets: None

addlconGray

Description: The icon for the add button to add entries to the set in grayed out state.
Value Type: URL.

Possible Targets: None

C—12 Appendix C: About Style

removelcon

Description: The icon for the remove button to add entries to the set.
Value Type: URL.

Possible Targets: None

removelconGray

Description: The icon for the remove button to add entries to the set in grayed out state.
Value Type: URL.

Possible Targets: None

ScrollList

Description: The Scrol | Li st class represents a scrollable list; see “ScrollList” on
page A—59. It has the following attributes:

entryCel | . Represents cells in which entries reside.
| abel Cel | : Represents cells in which labels reside.
| abel Label : Represents labels in label cells.
titleCell: Represents the cell in which the title resides.
titl eLabel : Represents the title label.
Common Properties: backgr oundCol or, backgroundl mage.

Possible Targets: entryCel |, |abel Cell, titleCell.

Appendix C: About Style C—13

borderThickness

Description: The thickness of the scroll list border.

Common Properties: col or, fontFanily, fontSize, fontStyle, fontWight,
t ext Decor ati on.

Possible Targets: entryCel | , | abel Label, titlelLabel.

Unique Properties: None

borderColor
Description: The color of the scroll list border.

Value Type: URL.

Possible Targets: None

sortAscendinglcon

Description: The icon for the button to sort entries in ascending order, used in unsorted
columns.

Value Type: URL.

Possible Targets: None

sortDescendinglcon

Description: The icon for the button to sort entries in descending order, used in unsorted
columns.

Value Type: URL.

Possible Targets: None

CcC—14 Appendix C: About Style

sortedAscendinglcon

Description: The icon for the button to sort entries in ascending order, used in the sorted
column.

Value Type: URL.

Possible Targets: None

sortedDescendinglcon

Description: The icon for the button to sort entries in descending order, used in the sorted
column.

Value Type: URL.

Possible Targets: None

StatusSignal

Description: The St at usSi gnal class represents a status signal; see “StatusSignal” on
page A-72.

Unique Properties: None

failurelcon

Description: The icon to indicate a failure state.
Value Type: URL.

Possible Targets: None

Appendix C: About Style

C—15

newlcon

Description: The icon to indicate a new state.
Value Type: URL.

Possible Targets: None

nonelcon

Description: The icon to indicate a none state.
Value Type: URL.

Possible Targets: None

normallcon

Description: The icon to indicate a normal state.

Value Type: URL.

Possible Targets: None

oldlcon

Description: The icon to indicate an old state.
Value Type: URL.

Possible Targets: None

C—16

Appendix C: About Style

problemlcon

Description: The icon to indicate a problem state.
Value Type: URL.

Possible Targets: None

repliedicon

Description: The icon to indicate a replied state.
Value Type: URL.

Possible Targets: None

severeProblemlcon

Description: The icon to indicate a severe problem state.

Value Type: URL.

Possible Targets: None

successlcon

Description: The icon to indicate a success state.
Value Type: URL.

Possible Targets: None

Appendix C: About Style Cc—17

cListNavigation

Description: This is used for the collapsible list navigation system.
Unique Properties:

col | apsi bl eLi st Wdt h: The pixel width of the collapsible list widget.
Value Type: Positive integer.

Possible Targets: None

infoHeight

Description: The pixel height of the information widget.
Value Type: Positive integer.

Possible Targets: None

tabHeight

Description: The pixel height of the tab widget.
Value Type: Positive integer.

Possible Targets: None

collapsibleList

Description: The collapsible list widget in the collapsible list navigation system.
Common Properties: backgr oundCol or, backgroundl mage.

Possible Targets: | i st, page.

Cc—18 Appendix C: About Style

borderThickness

Description: The thickness of the scroll list border.

Common Properties: col or, fontFanily, fontSize, fontStyle, fontWight,
t ext Decor ati on.

Possible Targets: sel ect ed, unsel ected wi dth.

Unique Properties: None

collapsed Icon

Description: The icon to indicate an item with children is collapsed.
Value Type: URL.

Possible Targets: None

expandedIcon

Description: The icon to indicate an item with children is expanded.
Value Type: URL.

Possible Targets: None

selectedlcon

Description: The icon to indicate an item without children is selected.
Value Type: URL.

Possible Targets: None

Appendix C: About Style c—19

unselectedlcon

info

Description: The icon to indicate an item without children is unselected.
Value Type: URL.

Possible Targets: None

Description: The information widget used in several navigation systems.
Common Properties: backgr oundCol or, backgroundl mage.
Unique Properties: None

Possible Targets: error, help, color, fontFamly, fontSize, fontStyle,
font Wei ght, textDecoration.

downlcon

Description: The icon for the button for going down.
Value Type: URL.

Possible Targets: err or, hel p.

downlconGray

Description: The icon for the button for going down in grayed out state.
Value Type: URL.

Possible Targets: error, hel p.

Cc—20

Appendix C: About Style

typelcon

Description: The icon to indicate the type of the information.
Value Type: URL.

Possible Targets: error, hel p.

uplcon
Description: The icon for the button for going up.

Value Type: URL.

Possible Targets: error, hel p.

uplconGray

Description: The icon for the button for going up in grayed out state.
Value Type: URL.

Possible Targets: error, hel p.

tab

Description: The tab widget used in the collapsible list navigation system.

Common Properties: backgr oundCol or, backgroundl mage, color, fontFamly,
fontSize, fontStyle, fontWight, textDecoration.

Possible Targets: sel ect ed, unsel ect ed.

Unique Properties: None

Appendix C: About Style c—21

logo
Description: The logo to be shown next to the tabs.

Value Type: URL.

Possible Targets: None

selectedlmageleft

Description: The image put on the left of the selected tab item.
Value Type: URL.

Possible Targets: None

selectedimageRight

Description: The image put on the right of the selected tab item.
Value Type: URL.

Possible Targets: None

unselectedlmageleft

Description: The image put on the left of unselected tab items.
Value Type: URL.

Possible Targets: None

Cc—22 Appendix C: About Style

unselectedimageRight

Description: The image put on the right of unselected tab items.
Value Type: URL.

Possible Targets: None

Appendix D

Base Data Types

This appendix contains base data type definitions for the the Qube 3 software architecture
architecture.

CAUTION! Do not reuse or redefine the base types listed below. If you modify
the definitions of the base types, it can cause a data collision where it might not
be clear which data type definition is used. If you need to extend the data type

definitions, append your vendor name to them, for example,

vendor _use. enmi | addr ess.

Scalar

Scal ar is any data.

<t ypedef nane="scal ar" type="re"

Word

Wor d is any non-whitespace data.
<t ypedef nane="word" type="re"
VAN r\vif] +8"/ >

Alphanum

Al phanumis any alphanumeric data.

<t ypedef nane="al phanunt type="re"
9] +$"/ >

data="".*$"/>

data=""["

dat a=""[A- Za- z0-

Appendix D: Base Data Types

Alphanum_plus

Al phanum pl us is alphanumeric data plus an approved subset of punctuation.
<t ypedef
name="al phanum pl us"
type="re"
dat a=""[A-Za-z0- 9. -] +$"

/>

Int

I nt is a signed integer.
<t ypedef nanme="int" type="re"
data=""(\-?[1-9][0-9]*)| (0)$"/>

Uint

Ui nt is an unsigned integer.
<typedef name="uint" type="re"
data=""([1-9][0-9]*)| (0)$"/>

Boolean

Bool ean is empty or 0 for false; any data for true.

<t ypedef name="bool ean" type="re" data=".*"/>

Appendix D: Base Data Types D—3

Ipaddr

| paddr is an IP address.
<t ypedef nanme="i paddr" type="re"
data="~(([0-9]) | ([1-9][0-9]) | (L[0-9][0-9])] 2[0-4][0-9]|25[0-5])\
(([0-9])| ([1-9][0-9])| (1[0-9][0-9])| 2[O- 4] [0-9] | 25[0-5])\. (([O-
91) | ([1-91[0-9]1) | (1[0-9][0-9])|2[0-4][0-9]|25[0-5])\.(([0-9])]([1-
9]1[0-9])|(1[0-9][0-9])|2[0-4][0-9]]|25[0-5])$"

/>

Network

Net wor k defines a network number, such as 10. 9. 0. 0/ 16.

<typedef nane="network" type="re"
data=""(([0-9])|([1-9]1[0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])\
~(([0-9]) 1 ([1-9][0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])\. (([O-
9]1)I([1-9][0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])\.(([0-9])|([1-
9”2-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])/([1-9]|[12][0-9]|3[0-
o1) §"
/>

Email Address

Ermai | _addr ess is the address of the email user, for example, j anedoe@un. com
<t ypedef
name="enui | _address"
type="re"
data=""[a-zA-Z\-_\d\.] N\ @a-zA-Z2\-\ _\d\.]+$"

/>

D—4 Appendix D: Base Data Types

Netmask

Net mask can be either a number from 1 to 32 or a dot-quaded IP mask.
<typedef nanme="net mask" type="re"

data=""(([1-9])|([12][0-9])]|(3[O-

2]1) | ((0] 128] 192| 224 240| 248| 252| 254| 255)\ . O\ . O\ . 0) | 255\
. ((0] 128] 192| 224| 240| 248| 252| 254| 255)\ . O\ . 0) | 255\ . 255\

. ((0] 128] 192| 224| 240| 248| 252| 254| 255)\ . 0) | 255\ . 255\ . 255\
. ((0] 128| 192| 224| 240| 248| 252| 254| 255))) $"

/>

Fqdn

Fgdn is the fully-qualified domain name, for example, ww. sun. com
<typedef name="fqgdn" type="re"
data=""([A-Za-z0-9] [A-Za-z0-9\ -] *\.) +[A- Za-z] {2, 3} $"

/>

Hostname

Host nanme is defined as follows:
<t ypedef name="host nane" type="re"
dat a=""[A-Za-z0-9] [A-Za-z0-9\ -] *(\.[A- Za- z0- 9] [A- Za- z0- 9\ -] *) * "

/>

Appendix D: Base Data Types

Domainname

Domai nnane is defined as follows:

<t ypedef nane="domai nnane" type="re"
dat a=""(1 ocal domai n) | (([A- Za-z0-9] [A- Za- z0-9\ -] *\ .) +[A- Za-
z]1{2,3}) %"
/>
<t ypedef

nane="passwor d"
type="re"
dat a="~["\ 001-1037\177] {3, 16} $"

/>

Appendix D: Base Data Types

Appendix E

Cobalt System Configuration Protocol

Chapter Contents

Example Headers

Messages

CSCP Command Summary
Common Syntax Definitions

CSCP Commands

CSCP Handler Extensions

Built-in Properties of Objects

This appendix describes the details of the Cobalt System Configuration Protocol (CSCP). For
an overview of how CSCP works with the rest of the Qube 3 software architecture, see
Chapter 5, “Introducing the Cobalt Configuration Engine”. CSCP enables communication
between a client application and CCE or when CCE communicates with a handler.

When a CSCP session begins, the server starts the connection by transmitting a CSCP header

to the client. This header is described below in lazy-BNF notation.

Header ::= ldentifier-Line ObjectlD Line? Ready-Line
ldentifier-Line ::= "100 CSCP/" version nl

ojectID-Line ::= "101 EVENT " object-id "." (nanespace "."
property

Ready- Line ::= "200 Ready" nl

A handler is triggered because of some change in an object. The Cbj ect | D- Li ne tells you

the name of the Obj ect | D and the namespace.

Qbj ect | D-Li ne and At t ri but e- Li ne are only meaningful in the context of CCEd

communicating with an event handler.

E—2 Appendix E: Cobalt System Configuration Protocol

Example Headers

When CCE connects to a client or a handler, the header is sent.This is an example header that
a Ul client would expect to see when connecting to CCEd:

100 CsSCP/ 1.0
200 Ready
These are example headers that an event handler would expect to see when CCEd connects to
the handler:
100 CSCP/ 1.0
101 Event 5. CREATE
200 K
100 CSCP/ 1.0
101 Event 27.Foo. enabl e
200 X
100 CSCP/ 1.0

101 Event 93..enable
200 K

Appendix E: Cobalt System Configuration Protocol E—3

Messages

This section explains patterns that repeatedly occur in CSCP. All lines sent by the server
consist of a numeric code and a set of arguments. The first digit (hundreds place) of the code
defines whether the message is informational, a warning, a success, or a failure.

100-199 = Infornational

200-299 = Success

300-399 = Warni ng

400-499 = Failure

900-999 = System i ssued nessage (can be sent at any tine)
A response is made up of any number of 100 or 300 lines, finishing with a single 200 or 400
line. Response codes are shared between different commands. However, messages with the

same code always share the same syntax, regardless of the command the message is
responding to.

The lowest 30 codes of each 100 and 300 block and the lowest 10 codes of each 200 and 400
block is reserved for common messages. Codes outside those blocks are allocated as needed.
The following is a more detailed breakdown of allocations:

"100 CSCP/" version

"101 EVENT oid. event™

"102 DATA " key " =" val

"103 DATA " key " =" val (unconmtted)

"104 OBJECT " oid

"105 NAMESPACE " nanespace

"106 I NFO " nsg

"107 CREATED'

"108 DESTROYED'

"109 SESSIONID " session-id-string

"110 CLASS " cl assnane

111-119 : reserved

120-129 : reserved for protocol headers

130-199 : allocated for commands

E—4

Appendix E: Cobalt System Configuration Protocol

"200 READY"

"201 X"

"202 GOCDBYE"
203-209 : reserved

210-299 : allocated for comuands

"300 UNKNOWN OBJECT " oid

"301 UNKNOWN CLASS " cl ass

"302 BAD DATA " oid " " key " " val ue
"303 UNKNOWN NAMESPACE " nanespace
"304 PERM SSI ON DENI ED' reason

"305 WARN " nsg

"306 ERROR " nsg

"307 QUT OF MEMORY"

308-329 : reserved

330-399 : allocated for commands

"400 NOT READY"
"401 FAIL"

"402 BAD COMVAND'
"403 BAD PARAMETERS'
404- 410 : reserved

420-499 : allocated for commands

"998 SHUTTI NG DOVW'
"999 ENG NE ON FI RE"

Appendix E: Cobalt System Configuration Protocol

CSCP Command Summary

This is the total set of CSCP commands:
Table E-1 CSCP commands

Command

Description

AUTH

Authenticates as a user, to get that user’s access privileges (starts a new
session).

AUTHKEY

Authenticates to an already existing session.

ENDKEY

Expires the current sessi oni d.

VWHOAM

Returns the OID of the currently authenticated user.

BYE

Closes the connection.

COW T

Triggers any postponed handler activity.

CREATE

Creates a new object of a certain class.

DESTROY

Destroys an object.

FI ND

Finds all objects that match a given criteria.

GET

Gets all properties of a certain object.

NAMES

Lists namespaces associated with a class (for example, services).

CLASSES

Lists all classes.

SET

Sets the properties of a certain object.

These additional commands are available in handler mode, that is, when the CCEd is
communicating with a handler:

Table E-2 Additional CSCPcommands for handler mode

Command

Description

BADDATA

Reports that an unrecognized attribute or value was passed.

I NFO

Reports a piece of information.

WARN

Reports a warning or error.

See Chapter 5 for the Perl, C, and PHP libraries of CSCP commands.

E—6 Appendix E: Cobalt System Configuration Protocol

Common Syntax Definitions

Syntax for commands is described in lazy-BNF notation, that is, it is similar to BNF, but is
human readable.

sp ::=[\t]l+ (any nunmber of whitespace characters)

nl ::="\n’

CLASSNAME ::= "SITE" | "USER' | "GROUP" | "MAILLIST"
al phanumeric_string ::= [AZa-z0-9_]+

quoted_string ::= "\"" [A\"]* "\""

stringvalue ::= quoted_string | al phanuneric_string

KEY ::= stringval ue

VALUE ::= stringval ue

A D ::= stringval ue

CSCP Commands

The AUTH Command

The AUTH command authenticates the client to have the permissions of the specified user. To
re-AUTH to the default (anonymous) user, specify user nanme and passwor d as blank strings

(HH)'
Syntax:
"AUTH' sp USERNAME sp PASSWORD nl

USERNAME: The user’s username.
PASSWORD: The user’s password (unencrypted).

Return Values: 109, 201, 401.

Appendix E: Cobalt System Configuration Protocol E—7

The AUTHKEY Command

The AUTHKEY command authenticates to an existing session, assuming that sessions’s i d and
privileges.

Syntax:
" AUTHKEY" sp USERNAME sp SESSI ON- KEY nl

SESSI ON- KEY: An alphanumeric string that uniquely identifies a session-user pair.

Return Values: 109, 201, 401.

The ENDKEY Command

The ENDKEY command alerts the server to immediately expire the current sessi oni d and not
allow it as a parameter to AUTHKEY.

Syntax:
" ENDKEY" nl

Return Values: 201.

The CREATE Command

The CREATE command takes a class name and a list of attributes and creates a new object of
that type.

Syntax:
" CREATE" sp CLASSNAME (sp KEY sp "=" sp VALUE)* nl

Informational Responses: 104.
Warning Responses: 301, 302, 303, 304.

Return Values: 201, 401.

Appendix E: Cobalt System Configuration Protocol

The DESTRQOY Command

The DESTROY command takes an OID and destroys the object.

Syntax:
"DESTROY" sp oid

Informational Responses: 300, 304.

Return Values: 201, 401.

The SET Command

The SET command modifies the attributes of an existing object.

Syntax:
"SET" sp QD ("." NAMESPACE)? (sp KEY sp? "=" sp? VALUE)* nl

Warning Responses: 300, 302, 303, 304.

Return Values: 201, 401.

The GET Command

The GET command returns all of the current attributes for the specified object. In the face of
transactions (such as a handler’s view of the ODB), GET returns both the previous state and
the current state, in that order. There are two | NFOmessages to denote that an object was just
created (has no previous state) or just destroyed (has no current state).

Syntax:
"GET" sp OD ("." NAMESPACE)? nl

Informational Responses: 102, 103, 107, 108.
Warning Responses: 300, 303.

Return Values: 201, 401.

Appendix E: Cobalt System Configuration Protocol

The COMMIT Command

The COW T command triggers any deferred activity.

Syntax:
"COMWM T" nl

Informational Responses: 106.
Warning Responses: 305.

Return Values: 201, 401.

The NAMES Command

The NAMES command returns a list of all defined namespaces for a class.

Syntax:
"NAMES" sp (O D| CLASSNAME) nl

Informational Responses: 105.
Warning Responses: 300, 301.

Return Values: 201, 401.

The CLASSES Command

The CLASSES command returns a list of all defined classes.

Syntax:
" CLASSES" nl

Informational Responses: 110.

Return Values: 201.

E—10 Appendix E: Cobalt System Configuration Protocol

The FIND Command

The FI ND command searches through object space to find all objects of a given class that
match a criteria.

Syntax:
"FIND' sp CLASSNAME (sp ("SORT"|"SORTNUM') sp SORTKEY) ?
(sp KEY sp? "=" sp? VALUE)* nl

FI ND searches within the set of objects that belong to class CLASSNANME. FI ND finds all of the
objects of that class whose properties match the properties set forth in the KEY- VALUE list.
KEY may be of the form PROPERTY or NAMESPACE. PROPERTY.

If the SORT option is specified, the objects are returned in order, sorted alphanumerically from
lowest to highest according to the value of the SORTKEY property of each object. SORTKEY
may be of the form PROPERTY or NAMESPACE. PROPERTY.

If the SORTNUMoption is specified, the objects are returned in order as with the SORT option,
except that the objects are sorted in numeric order, that is, 9 < 10, as opposed to alphanumeric
order, that is, 9 > 10, because “9” comes after “1”.

SORTNUMis capable of handling the sorting of integers (“11”), floating point numbers
(“12.54”), and version numbers (“v1.5.3.27”). Version numbers are special numbers that must
start with the letter “v”. They differ from floating point numbers in the sense that every group
of digits within the version numbers is compared like an integer. For example:0.15 is less than
0.2 (floating point numbers), but v0.15 is greater than v0.2 (version numbers).

Informational Responses: 104.
Warning Responses: 301.

Return Values: 201, 401.

Appendix E: Cobalt System Configuration Protocol E—11

The WHOAMI Command

Syntax:
"WHOAM " nl

If the session is currently authenticated, WHOAM returns the OID of the user object that the
connection is currently authenticated as. If the connection is not authenticated, or is
authenticated as "" (anonymous), the OID returned is - 1.

Informational Responses: 104.

Return Values: 201.

The BYE Command

The Bye- Condi ti on field is optional and is ignored unless CCEd is talking to an event
handler, that is, in handler mode.

In a handler context, if the "Bye-Condition" is omitted (or if the handler exits without issuing
a "BYE" command), the handler is assumed to have failed (for example, as if the handler had
issued the command "BYE FAIL").

Syntax:

"BYE" Bye-Condition? nl

Bye-Condition ::= (Bye-Success | Bye-Failure | Bye-Defer)
Bye- Success ::= " SUCCESS"

Bye-Failure ::= "FAIL"

Bye- Def er = "DEFER'

Return Values: 202.

E—12

Appendix E: Cobalt System Configuration Protocol

CSCP Handler Extensions

The BADDATA Command

The BADDATA command is used by a handler to report that one of the attributes or data in the
current operation is not valid for the specified class and namespace.

Reporting bad data is left to the discretion of the handler. Handlers can choose to not flag
BADDATA errors if they want to facilitate future extensions to a namespace.

Syntax:
"BADDATA" sp O D sp KEY sp VALUE nl

Return Values: 201.

The INFO Command

The I NFOcommand is used by a handler to report some piece of info for use by the front-end.
The parameter MESSAGE is a single string formatted as listed below. This format allows easy
parsing by internationalization software at higher levels.

Syntax:
"I NFO' sp MESSAGE nl

MESSACE ::= domain ":" tag (<sp>+ varlnanme <sp>* "=" <sp>* varlval)*

Variable names must follow all the same guidelines as a property name, and variable values
must be alphanumeric or a properly quoted and escaped string.

Return Values: 201.

Appendix E: Cobalt System Configuration Protocol E—13

The WARN Command

The WARN command is used by a handler to report some piece of information for use by the
front-end. See the | NFO command for information on MESSAGE parameter format.

Syntax:
"WARN' sp MESSAGE nl

Return Values: 201.

Built-in Properties of Objects

Using the GET command, a hash is returned from the Object Database (ODB). In addition to
ordinary properties, it also has these magic properties inserted in it:

O D: The unique identifier number for the object.

CLASS: The class of the object.

NAMESPACE: The namespace of the subset of properties retrieved.

E—14 Appendix E: Cobalt System Configuration Protocol

Appendix F

CCE Class Definitions

Chapter Contents

Programming Conventions
CCE Classes
System
Network
Route
Workgroup
Workgroup Defaults
User
UserDefaults
MailList
User.Email
System.Email
System.FTP
System.Snmp
DhcpParam
DhcpStatic
DhcpDynamic

F—2 Appendix F: CCE Class Definitions

Programming Conventions

The class definitions use the following conventions:

¢ All class names have the first character capitalized. For example, Syst em If they have
more than one word, the first character of all words is capitalized. For example,
Mai | Li st.

* Nanespace names follow the same rule as class names.

¢ All property names start with an all lowercase first word. If a property name has more
than one word, the first characters of the second word onwards are capitalized. For
example, gat eway and st yl ePr ef er ence are valid property names.

CCE Class Definitions

System

Syst em stores all system-wide configuration settings. There should be exactly one Syst em
object in every functional system.

Table F—-1 Network

Properties

Definition

host nane

The name of the host (first half of the Fully Qualified Domain Name).

donai nnanme

The domain name of the host (second half of the Fully Qualified Domain
Name).

gat eway

IP address of the default gateway.

DNS

Colon (:) delimited list of DNS server IP addresses.

notify_email

Address to whom to email emergency reports.

ti me_region

Used by Ul to select timezones.

time_country

Used by Ul to select timezones.

ti me_zone

Time zone to use.

r eboot

Set to true to enable rebooting the machine and is cleared whenever CCE is
restarted.

hal t

Set to true to halt the machine. Cleared when restarted.

Appendix F: CCE Class Definitions

Network

Net wor k stores settings relevant to the basic (non-virtual) TCP/IP network interfaces.

Table F—2 Network

Properties

Definition

devi ce

Usually either et hO or et h1l.

i paddr

IP address for this interface.

net mask

Netmask for this interface.

Medi a Address
Contr ol

MAC address of this interface.

enabl ed

True to bring the interface up; false to take it down.

boot prot o

Either DHCP, none, or LCD.

Route

Rout e adds additional gateways for some routes.

Table F-3 route

Properties

Definition

t ar get

The destination subnet or host to perform routing.

net mask

Netmask of target subnet.

gat eway

IP address of gateway for this subnet.

devi ce

Device (defaults to the device gateway is within).

Workgroup

Wor kgr oup stores all workgroup-specific settings.

Table F—4 workgroup

Properties

Definition

enabl ed

Determines if the workgroup enabled (boolean).

nmenbers

Colon (:) delimited list of usernames who are members of this group.

F—4

Appendix F: CCE Class Definitions

Table F—4 workgroup

Properties Definition
name The unique name of this workgroup (alphanumeric).
quot a Disk space quota for this workgroup (integer).

Workgroup Defaults

Wor kgr oup def aul t s stores workgroup defaults

Table F-5 workgroup defaults

Properties

Definition

quot a

Allowed disk space (in megabytes).

User

User stores all user-specific settings.

Table F—6 user

Properties Definition
enabl ed Used to enable or disable the users account.
ful | Name The full comment name of the user.

| ocal ePr ef erence

Used exclusively by the Ul

name The unique name of this user (alphanumeric).
password The user’s plaintext password.

sort Name The string to use when sorting users.

shel | Path to the user’s shell.

site The name of the site to which the user belongs.

si t eAdni ni strat or

Is the user a site administrator?

styl ePreference

Used exclusively by the UL

syst emAdmi ni st rat or

Is the user a system administrator?

Appendix F: CCE Class Definitions

UserDefaults

User Def aul t s stores user defaults.

Table F—7 User Defaults

Properties

Definition

quot a

Allowed disk space (megabytes)

user NaneGenhMbde

The mode for user name generation. Possible values are fi r st I ni t Last,
first,l ast.

MailList

Mai | Li st represents a mailing list.

Table F-8 MailList

Properties Definition

name Alphanumeric name of the mailing list.

password Password for authenticating mail-admin commands.
post Pol i cy Rules to restrict who can post to the list.

nmoder at ed Indicates that only moderators can post.

any Anybody can post.

menber s Only members can post.

subPol i cy Rules to restrict who can subscribe to the list.

cl osed Only the administrator or moderators can subscribe users.
open Anybody can subscribe.

confirm Anybody can subscribe, confirmation required for subscriptions.

| ocal _recips ",

Delimited list of local usernames to receive mail.

renote_recips ",

Delimited list of remote usernames.

noder at or The list moderator.

group What group is this mailing list associated with (for quota purposes)?

site This field should always be empty for Sun Cobalt Qube 3 server
appliance.

enabl ed Is list active? (Boolean value; default is true.)

Appendix F: CCE Class Definitions

User.Email

User. Enmi | determines email-specific properties.

Table F-9 User.Email

Properties

Definition

enabl ed

Determines if email is enabled.

al i ases

List of email aliases for this user.

forward

Address to forward this user’s email.

vacation

Is user on vacation? What’s the message?

url

URL of UI for configuring email properties.

apop

Whether APOP is active for this user.

System.Email

Syst em Enmi | lists system-specific email properties.

Table F-10 System.Email

Properties

Definition

accept For

Array[Host | Domai n] for which to accept mail.

deni ed

Array[Host | Domai n] for which to deny mail.

r el ayFor

Array[Host | Domai n] to relay for.

routes

Hash[Donai n: Donmai n] redirection.

masqDonai n

Domain to masaquerade as.

smart Rel ay

Host to forward mail to.

del i ver yMbde

Alter(’interactive’,’background’,’queue’). Controls how email is delivered.

privacy

Boolean representing high email security (Expn/Vrfy).

maxMessagesSi ze

Integer (in megabytes). Largest size email to accept and send. 0 to disable.

queueTi e

Alter (’daily’, half-daily’... and others). Controls how often mail is queued
per Cr on intervals.

Appendix F: CCE Class Definitions

System.FTP

Syst em FTP determines FTP settings.
Table F-11 System.FTP

Properties

Definition

enabl ed

Determines whether FTP is enabled.

anon_en

Determines whether anonymous FTP is enabled.

nmaxusers

Number of simultaneous users who can be logged in.

quot a

Quota for anonymous files.

url

URI of UI for configuring FTP properties.

System.Snmp

SNIVP settings are settings for Simple Network Mail Protocol.

Table F-12 SNMP

Properties

Definition

enabl ed

Determines whether SNMP server is enabled.

readComuni ty

Read-only SNMP community

readWiteCommunity The read and write SNMP community

DhcpParam

DhcpPar am are parameters for DHCP clients.

Table F—13 DhcpParam

Properties

Definition

enabl ed

DHCPd on or off flag.

domai nnane

The domain name of the host (second half of the Fully Qualified Domain
Name).

gat eway

IP address of the default gateway.

dns

Colon (:) delimited list of DNS server IP addresses.

F—8 Appendix F: CCE Class Definitions

Table F-13 DhcpParam

Properties Definition
net mask Netmask for this network.
| ease The maximum lease time in seconds.

DhcpStatic

DhcpSt at i ¢ configures static address assignments.

Table F-14 DhcpStatic

Properties Definition
i paddr IP address to assign to this MAC address.
mac Media Access Control (MAC) address to get the above IP Address.

DhcpDynamic

DhcpDynami ¢ provides configuration for dynamic address range assignments.

Table F—15 DhcpDynamic

Properties Definition

i paddrl o The beginning of the range.

i paddr hi The end of the range.

Index-1

Index

Symbols
.pkg file format6-1

A

AddButton A-3
addiconGrayC-11
alphanumD-1
alphanum_plu$-2
appliancel—2
application module
naming6-3
ArrayPackerB-1
audiencel—-3
AUTH commandE-6
authenticatior6-20
AUTHKEY commandE-7

B

BackButtonA-3

back-end module6-2
BADDATA commandE-12
baddata(6-37

Bar A-4

binary modules-2
BlueLinQ 6-11, 6-20
booleanD-2
borderColorC-13
borderThicknes€-4, C-13, C-18
BUILD variables6-5
Button A-5

BYE commandE-11

bye() 5-32

C

C library 5-16
CancelButtonA-8

CCE

extending5-2

handler configuration fil&-13

library 5-16
CCE daemon (CCE®-2, 5-4

command-line parameters

5-5

CCE Flow5-3
CCE Process Flob-4
CCE_CREATED5-18
CCE_DEFER5-18
CCE_DESTROYEDbG-18
CCE_FAIL5-18
CCE_MODIFIED5-18
CCE_NONEb5-18
CCE_SUCCESS$-18
cceClient5-5

public method$-40
CLASSES commandE-9
Classes(p-33
cListNavigationC-17
Cobalt Configuration Engine (CCR-7, 5-2, 5-3
Cobalt Configuration Engine daemon (CCHe)6
Cobalt Object Database (CODRY-6, 5-2, 5-6

Cobalt System Configuration Protocol (CSCR7, 5-2,

5-5
collapsed IcorC-18
collapsibleListC-17
COMMIT commandE-9
CompositeFormField\-9
configuration files2—9
connectfd()5-37
connectuds|(b-33
CountryNameA-11
CREATE commande-7
create()5-33
creating a Perl obje&-31

Index-2

D

datatype-17
DESTROY commande-8
destroy()5-34
DetailButtonA-11
DhcpDynamic setting&-8
DhcpParam settings-7
DhcpStatic settingé-8
dividerHeightC-10
document roadmap—4
domain4-3
DomainNameA-12
domainnamedD-5
DomainNameListA-12
downlconC-19
downlconGrayC-19

E

email_addres®-3
EmailAddressA-12
EmailAddressListA-13
ENDKEY commandE-7
endkey()5-34
enum
cce_handler_reb-18
cce_props_state 3-18
Error B-3
error checkingA-1
event
*5-14
CREATES-14
DESTROY5-14
handlers5-2, 6-8
propertynameb-14
triggered2—-10
event_namespace®y39
event_object(-39
event_oid()5-39
event_old()5-40
event_property(p-39
expandedicorC-18

F

failurelconC-14

FileUploadA-14

FIND commandE-10

findNSorted()5-35

findSorted()5-35

fontFamily C-4

fontSizeC-4

fontStyle C-4

fontWeight C-5

FormA-15

FormFieldA-18

FormFieldBuilderA-22

fqdn D-4

FTP5-5

FullNameA-27

Fully Qualified Domain Namé--2, F-7

function
cce_array_deserial(5-30
cce_auth_cmnd($-19
cce_authkey _cmnd(5-19
cce_bad_data_cmndf)y24
cce_bye_cmnd(5-20
cce_bye_handler_cmnd®)25
cce_connect_cmnd(5-20
cce_connect_handler_cmnd$)25
cce_create_cmnd(5-20
cce_destroy_cmnd(5-21
cce_endkey_cmnd(5-21
cce_find_cmnd(b-21
cce_find_sorted_cmnd(§-22
cce_get_cmnd(%-22
cce_handle_destroy(5-26
cce_handle_new(5-26
cce_last_errors_cmnd(®-25
cce_list_destroy(p-30
cce_names_class_cmnd$y23
cce_names_oid_cmndb)y23
cce_props_count(5-26
cce_props_destroy(5-27
cce_props_get(%-27
cce_props_get_new(5-27
cce_props_get_old(5-28
cce_props_new(»-28

Index-3

cce_props_nextkey(5-28
cce_props_reinit(5-28
cce_props_set(9-29
cce_props_set_old(5-29
cce_props_state(5-29
cce_set_cmnd(%-23
cce_whoami_cmnd(%-24
cscp_oid_from_string(»-30
cscp_oid_to_string($-31

G

GET commandz-8
get()5-36
gettext4-2
GroupNameA-27

H

handler
configuration file5-13
events5-14
registration filesb-15
stagesH-15
handlers6-3, 6-4
hostnameD-4
HTML A-2
HTML generationA-1
HtmIComponentA-27
HtmIComponentFactorA-1
HTTP 5-5
HTTP header#\-2

I
i18n 4-1
C language interfacé-7
interface4-6
interpolation4-5
icon C-10
ImageButtonA-28
ImageLabelA-29
IMAP 6-2
info C-19
INFO commandE-12
info() 5-38
infoHeight C-17
install package filé5-9

int D-2
IntegerA-30
internationalizatiord4-2
modules6-2
strings6-15
interpolation4-5
IntRangeA-32
ipaddrD-3
IpAddressListA-33
ISO-6394-4

J
JavaScript error checkingy-1

L

[10n 4-1
Label A-33
libraries
wrapper5-5
library
C 5-16
CCE5-16
Locale A-35
locale 6-4
identifier 4-4
localization4-2
logo C-21

M

MacAddressA-35
MailList settingsF-5
MailListName A-36
Majordomo6-2
make rules6-6
makefile variable6-4
menu
item 3—6
method
auth()5-32
authkey()5-32
baddata(6-37
bye() 5-32
classes(b-33
connectfd()5-37
connectuds(p-33

Index-4

create()5-33
destroy()5-34
endkey()5-34

event_namespace®)y39

event_object(-39
event_oid()5-39
event_old()5-40

event_property(-39

findNSorted()5-35

findSorted()5-35

get()5-36

info() 5-38

oid() 5-38

set()5-36

warn()5-38

whoami()5-37
ModifyButton A-36
modularity 2—10
module

directory layout6-5

file hierarchy6-23
MultiButton A-36
MultiChoice A-39, C-8
MultiFileUpload A-42

N

NAMES commandE-9
namespacd-3

naming your application moduf@-3

NetAddressA-43
NetAddressListA-43
netmaskD-4
network D-3
settingsF-3
newlconC-15
nonelconC-15
normallconC-15

o

object
abstraction?—8
extending2—8
manipulation5-6
Object ID (OID)5-18
oid() 5-38

oldlcon C-15
Option A-43

P
packageb-3
authenticatior6-20
dependency modd-17
file format 6-1, 6-12
file structure6-15
files 6-12
install 6-9
signature6-20
skeleton modulé&-4
stand-aloneés-17
user interfaces-4
package installation
update serve6-20
packing_list forma6-16
PageA-46, C-8
PagedBlockA-50, C-9
PasswordA-56, C-10
Perl
library 5-31
object5-31
PHP3-7, A-1, A-2
Pluggable Authentication Modules (PANS}4
post-installation script6-21
preinstallation scrip6-20
problemlconC-16
programmatic conventiorb—5

property
elementsC-2
typesC-2

R

Redhat Package Modules (RPMsR0
related document$—4
RemoveButtorA-57, C-10
removelconC-11, C-12
removelconGrayC-12
repliedlconC-16
roadmap

documentl—4
route settingd--3
RPMs6-20

Index-5

S

SaveButtorA-58, C-11
scalarD-1
schema
definition 5-6, 5-9
script
preinstallation6-20
ScrollList A-59, C-12
selectedlcorC-18
selectedimagelLefE-21
selectedimageRighE-21
SendMail6-2
ServerScriptHelpeB-5
service modulés-3
SET commande-8
set()5-36
SetSelectoA-69, C-11
settings
DhcpDynamicF-8
DhcpParant-7
DhcpStaticF-8
MailList F-5
network F-3
route F-3
systemF-2
System.EmaiF-6
System.FTH--7
System.Snmg--7
User.EmailsF-6
UserDefaultd=-5
user-specifid=-4
workgroupF-3
workgroup default$=-4
severeProblemlicofe-16
signature6-20
SnmpCommunityA-72
software update installatiot-20
sortAscendinglcorC-13
sortDescendinglcof-13
sortedAscendinglcof-14
sortedDescendinglco@-14
stand-alone packade17
StatusSignalA-72, C-14

struct
cce_error_56-17
cce_handle 5-17
cce_props_b-18
style
booleanC-2
color C-3
common propertie€-3
definition files 3—10
elementsC-1
files C-1
positive integelC-3
property type<C-2
target attribute€C-2
URL C-3
style properties
backgroundColoC-3
backgroundimag&-3
borderThicknes€-4
color C-4
fontFamily C-4
fontSizeC-4
fontStyle C-4
fontWeightC-5
textDecorationC-5
width C-5
styleResourcé€-1
Stylish A-74
Stylist A-74
successlcorC-16
system setting&-2
System.Email settings-6
System.FTP settings-7
System.Snmp settinds-7

T

tab C-20
tabHeightC-17

tag 4-3

target attribute€C-2
templates5-4
TextBlock A-77
textDecoratiorC-5
TextField A-79
TextList A-80

Index-6

the Qube 3 software architecture
development tool§-22
TimeStampA-80
TimeZoneA-81
TYPEDEF5-12
typedef
cscp_oid_15-18
typelconC-20
typographical conventions—5

U

UIFC
AddButton A-3
BackButtonA-3
Bar A-4
Button A-5
CancelButtonA-8
CompositeFormField\-9
CountryNameA-11
DetailButtonA-11
DomainNameA-12
DomainNameListA-12
EmailAddressA-12
EmailAddressListA-13
FileUploadA-14
Form A-15
FormFieldA-18
FormFieldBuilderA-22
FullNameA-27
GroupNameA-27
HtmIComponentA-27
ImageButtonA-28
ImageLabelA-29
IntegerA-30
IntRangeA-32
IpAddressListA-33
Label A-33
Locale A-35
MacAddressA-35
MailListName A-36
ModifyButton A-36
MultiButton A-36
MultiChoice A-39
MultiFileUpload A-42
NetAddressA-43

NetAddressListA-43
Option A-43
PageA-46
PagedBlockA-50
PasswordA-56
RemoveButtorA-57
SaveButtonA-58
ScrollList A-59
SetSetSelectoA-69
SnmpCommunityA-72
StatusSignalA-72
Stylish A-74
Stylist A-74
TextBlock A-77
TextField A-79
TextList A-80
TimeStampA-80
TimeZoneA-81
UninstallButtonA-82
Url A-82
UrlList A-84
UserNameA-86
UserNameListA-86
VerticalCompositeFormFiel&-86
uint D-2
UninstallButtonA-82
unselectedicorC-19
unselectedimagelLef€-21
unselectedimageRigliE-22
Updates men®-20
uplconC-20
uplconGrayC-20
Url A-82
UrlList A-84
user interfacés-4
library 3—1
style 3-10
user interface (Ul) module8-2
User Interface Foundation Classes (UIRBS)/, A-1
User.Email setting&-6
UserDefaults settings-5
UserNameA-86
UserNameListA-86
user-specific settings-4

Index-7

\
VerticalCompositeFormFiel&-86

w

WARN commandE-13
warn() 5-38

WHOAMI commandE-11
whoami()5-37

word D-1

workgroup defaults settings-4
workgroup setting$=-3
wrapper libraries-5

X

XML 5-6, 6-8
attributes5-7
commentss-8
elements-7
escape sequencBs8
files 6-7, C-1
symbols5-7
syntax5-6
tree nodeb-8
whitespaceb-6

Index-8

	Contents
	Introducing The Sun CobaltTM Qube 3 Software Architecture
	Introduction
	Audience

	About this Book
	Related Documents
	Document Roadmap

	Conventions Used in this Guide
	Typographical Conventions
	Programmatic Conventions

	Terminology

	About The Qube 3 Software Architecture
	The Appliance Concept
	The User Interface Defines the Appliance
	Navigating Around
	Building Pages
	Ideas Behind UIFC
	User Interface with Style
	Built-in Internationalization
	Abstraction of the System into Objects
	Storing the Objects
	Manipulating the Objects
	Extending the Objects
	Watching for Changes
	Actuating the Changes
	Modularity – Doing Your Own Thing
	What CCE is Not

	User Interface
	How the Navigation System Works
	XML Elements
	Navigation Manager
	Adding a New Navigation Node
	Using Unique Names

	Building Pages
	A Further Example

	The User Interface Style
	How Styles Work
	Changing the User Interface Style
	Making Other Style Changes

	Using i18n and l10n in The Qube 3 Software Architecture
	i18N: A World Tour
	Terminology

	How Internationalization Works
	Using Domains, Tags, and Locales
	Domains
	Tags
	Locale
	How Strings Are Added to the System

	Using Interpolation
	Interpolation Rules

	The i18n Interface
	The i18n C Language Interface

	The i18n PHP Interface
	Object Methods

	Internationalization Example

	Introducing the Cobalt Configuration Engine
	The Cobalt Configuration Engine (CCE)
	Basic Concepts
	How Data Flows Through CCE

	The CCE Daemon (CCEd)
	CCEd Command-Line Parameters

	The Cobalt System Configuration Protocol (CSCP)
	The Cobalt Object Database (CODB)
	Schemas
	How to Read XML Syntax Descriptions
	Whitespace
	Symbols
	Elements and Content
	Attributes
	Comments
	Escape Sequences
	Sample XML

	Schema Syntax
	Syntax: SCHEMA
	Syntax: CLASS
	Syntax: PROPERTY
	Syntax: TYPEDEF

	Sample Schema Definition File

	Handler Registration
	Events
	Handlers
	Stages
	File Naming
	Sample Handler Registration File

	CCE Libraries
	C
	Dependencies and Headers
	Datatypes
	Functions

	Perl
	Module
	Creating a New Object
	Methods

	Public Methods for CCEClient (PHP)

	Making Qube 3 Software Architecture-Aware Applications
	Making Qube 3 Software Architecture-Aware Applications
	About the Application Module
	Naming Your Application Module
	Building a New Service Module

	Making your Application into a Package
	Introducing Slush Barn, a “Real-World” Application
	How to Install your Package File on the Qube 3
	Installation Process
	Choices for the Installation Process

	Package Structure
	Package Dependency Model
	Information for Installing Stand-Alone Packages
	Software Update Server
	Development Details

	User Interface Foundation Classes
	HTML Generation
	Error Checking
	Reusable Code
	Common Pitfalls
	AddButton
	Public Methods

	BackButton
	Public Methods

	Bar
	Public Methods

	Button
	Public Methods

	CancelButton
	Public Methods

	CompositeFormField
	Public Methods

	CountryName
	Public Methods

	DetailButton
	Public Methods

	DomainName
	DomainNameList
	EmailAddress
	EmailAddressList
	Public Methods

	FileUpLoad
	Public Methods

	Form
	Applicability
	Usage
	Public Methods

	FormField
	Public Methods

	FormFieldBuilder
	Applicability
	Public Methods

	FullName
	GroupName
	HTMLComponent
	ImageButton
	Public Methods

	ImageLabel
	Public Methods

	Integer
	Public Methods

	IntRange
	Public Methods

	IpAddressList
	Label
	Public Methods

	Locale
	Public Methods

	MacAddress
	MailListName
	ModifyButton
	Public Methods

	MultiButton
	Applicability
	Usage
	Public Methods

	MultiChoice
	Applicability
	Usage
	Public Methods

	MultiFileUpload
	Public Methods

	NetAddress
	NetAddressList
	Option
	Applicability
	Public Methods

	Page
	Applicability
	Usage
	Public Methods

	PagedBlock
	Applicability
	Usage
	Public Methods

	Password
	Public Methods

	RemoveButton
	Public Methods

	SaveButton
	Public Methods

	ScrollList
	Applicability
	Usage
	Public Methods

	SetSelector
	Public Methods

	SnmpCommunity
	Public Methods

	StatusSignal
	Public Methods

	Stylish
	Public Methods

	Stylist
	Public Methods

	TextBlock
	Public Methods

	TextField
	Public Methods

	TextList
	TimeStamp
	TimeZone
	Public Methods

	UninstallButton
	Public Methods

	Url
	Public Methods

	UrlList
	Public Methods

	UserName
	UserNameList
	VerticalCompositeFormField

	Utility Classes
	ArrayPacker
	Applicability
	Public Methods

	Error
	Public Methods
	Optional Methods

	ServerScriptHelper
	Applicability
	Usage
	Public Methods

	About Style
	Style Files
	Supported Styles
	Boolean
	Color
	Positive Integer
	URL

	Common Properties
	backgroundColor
	backgroundImage
	borderThickness
	color
	fontFamily
	fontSize
	fontStyle
	fontWeight
	textDecoration
	width

	Styles
	Bar
	emptyImage
	endImage
	filledImage
	startImage
	Button
	CancelButton
	Label
	ModifyButton
	MultiChoice
	Page

	PagedBlock
	dividerHeight
	icon
	Password
	RemoveButton
	removeIcon
	SaveButton

	SetSelector
	addIconGray
	removeIcon
	removeIconGray

	ScrollList
	borderThickness
	borderColor
	sortAscendingIcon
	sortDescendingIcon
	sortedAscendingIcon
	sortedDescendingIcon

	StatusSignal
	failureIcon
	newIcon
	noneIcon
	normalIcon
	oldIcon
	problemIcon
	repliedIcon
	severeProblemIcon
	successIcon

	cListNavigation
	infoHeight
	tabHeight

	collapsibleList
	borderThickness
	collapsed Icon
	expandedIcon
	selectedIcon
	unselectedIcon
	info
	downIcon
	downIconGray
	typeIcon
	upIcon
	upIconGray
	tab
	logo
	selectedImageLeft
	selectedImageRight
	unselectedImageLeft
	unselectedImageRight

	Base Data Types
	Scalar
	Word
	Alphanum
	Alphanum_plus
	Int
	Uint
	Boolean
	Ipaddr
	Network
	Email Address
	Netmask
	Fqdn
	Hostname
	Domainname

	Cobalt System Configuration Protocol
	Example Headers
	Messages
	CSCP Command Summary
	Common Syntax Definitions

	CSCP Commands
	The AUTH Command
	The AUTHKEY Command
	The ENDKEY Command
	The CREATE Command
	The DESTROY Command
	The SET Command
	The GET Command
	The COMMIT Command
	The NAMES Command
	The CLASSES Command
	The FIND Command
	The WHOAMI Command
	The BYE Command

	CSCP Handler Extensions
	The BADDATA Command
	The INFO Command
	The WARN Command

	Built-in Properties of Objects

	CCE Class Definitions
	Programming Conventions
	CCE Class Definitions
	System
	Network
	Route
	Workgroup
	Workgroup Defaults
	User
	UserDefaults
	MailList
	User.Email
	System.Email
	System.FTP
	System.Snmp
	DhcpParam
	DhcpStatic
	DhcpDynamic

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

